Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101472415> ?p ?o ?g. }
- W3101472415 abstract "Linear mixed models are able to handle an extraordinary range of complications in regression-type analyses. Their most common use is to account for within-subject correlation in longitudinal data analysis. They are also the standard vehicle for smoothing spatial count data. However, when treated in full generality, mixed models can also handle spline-type smoothing and closely approximate kriging. This allows for nonparametric regression models (e.g., additive models and varying coefficient models) to be handled within the mixed model framework. The key is to allow the random effects design matrix to have general structure; hence our label general design. For continuous response data, particularly when Gaussianity of the response is reasonably assumed, computation is now quite mature and supported by the R, SAS and S-PLUS packages. Such is not the case for binary and count responses, where generalized linear mixed models (GLMMs) are required, but are hindered by the presence of intractable multivariate integrals. Software known to us supports special cases of the GLMM (e.g., PROC NLMIXED in SAS or glmmML in R) or relies on the sometimes crude Laplace-type approximation of integrals (e.g., the SAS macro glimmix or glmmPQL in R). This paper describes the fitting of general design generalized linear mixed models. A Bayesian approach is taken and Markov chain Monte Carlo (MCMC) is used for estimation and inference. In this generalized setting, MCMC requires sampling from nonstandard distributions. In this article, we demonstrate that the MCMC package WinBUGS facilitates sound fitting of general design Bayesian generalized linear mixed models in practice." @default.
- W3101472415 created "2020-11-23" @default.
- W3101472415 creator A5026548860 @default.
- W3101472415 creator A5047217922 @default.
- W3101472415 creator A5050191159 @default.
- W3101472415 creator A5083811602 @default.
- W3101472415 date "2006-02-01" @default.
- W3101472415 modified "2023-09-27" @default.
- W3101472415 title "General Design Bayesian Generalized Linear Mixed Models" @default.
- W3101472415 cites W10028449 @default.
- W3101472415 cites W1423766661 @default.
- W3101472415 cites W1494281971 @default.
- W3101472415 cites W1536497620 @default.
- W3101472415 cites W158306839 @default.
- W3101472415 cites W18553681 @default.
- W3101472415 cites W1968578768 @default.
- W3101472415 cites W1980215785 @default.
- W3101472415 cites W2004014822 @default.
- W3101472415 cites W2014581807 @default.
- W3101472415 cites W2015581436 @default.
- W3101472415 cites W2024085858 @default.
- W3101472415 cites W2061948518 @default.
- W3101472415 cites W2066615495 @default.
- W3101472415 cites W2067083492 @default.
- W3101472415 cites W2069626069 @default.
- W3101472415 cites W2070706581 @default.
- W3101472415 cites W2081302629 @default.
- W3101472415 cites W2089603425 @default.
- W3101472415 cites W2100267799 @default.
- W3101472415 cites W2130416410 @default.
- W3101472415 cites W2130761473 @default.
- W3101472415 cites W2142045810 @default.
- W3101472415 cites W2148275855 @default.
- W3101472415 cites W2148534890 @default.
- W3101472415 cites W2157244032 @default.
- W3101472415 cites W2157291679 @default.
- W3101472415 cites W2157601393 @default.
- W3101472415 cites W2201025417 @default.
- W3101472415 cites W2204383650 @default.
- W3101472415 cites W2492698467 @default.
- W3101472415 cites W2507058334 @default.
- W3101472415 cites W2533329771 @default.
- W3101472415 cites W32980360 @default.
- W3101472415 cites W4229681654 @default.
- W3101472415 cites W4231449701 @default.
- W3101472415 cites W4231537836 @default.
- W3101472415 cites W4232654336 @default.
- W3101472415 cites W4233028157 @default.
- W3101472415 cites W4235837249 @default.
- W3101472415 cites W4236649012 @default.
- W3101472415 cites W4239206999 @default.
- W3101472415 cites W4242889873 @default.
- W3101472415 cites W4252595567 @default.
- W3101472415 cites W4254345832 @default.
- W3101472415 cites W4298876635 @default.
- W3101472415 cites W4301861531 @default.
- W3101472415 cites W55912154 @default.
- W3101472415 doi "https://doi.org/10.1214/088342306000000015" @default.
- W3101472415 hasPublicationYear "2006" @default.
- W3101472415 type Work @default.
- W3101472415 sameAs 3101472415 @default.
- W3101472415 citedByCount "109" @default.
- W3101472415 countsByYear W31014724152012 @default.
- W3101472415 countsByYear W31014724152013 @default.
- W3101472415 countsByYear W31014724152014 @default.
- W3101472415 countsByYear W31014724152015 @default.
- W3101472415 countsByYear W31014724152016 @default.
- W3101472415 countsByYear W31014724152017 @default.
- W3101472415 countsByYear W31014724152018 @default.
- W3101472415 countsByYear W31014724152019 @default.
- W3101472415 countsByYear W31014724152020 @default.
- W3101472415 countsByYear W31014724152021 @default.
- W3101472415 countsByYear W31014724152022 @default.
- W3101472415 countsByYear W31014724152023 @default.
- W3101472415 crossrefType "journal-article" @default.
- W3101472415 hasAuthorship W3101472415A5026548860 @default.
- W3101472415 hasAuthorship W3101472415A5047217922 @default.
- W3101472415 hasAuthorship W3101472415A5050191159 @default.
- W3101472415 hasAuthorship W3101472415A5083811602 @default.
- W3101472415 hasBestOaLocation W31014724151 @default.
- W3101472415 hasConcept C105795698 @default.
- W3101472415 hasConcept C107673813 @default.
- W3101472415 hasConcept C111350023 @default.
- W3101472415 hasConcept C11413529 @default.
- W3101472415 hasConcept C153720581 @default.
- W3101472415 hasConcept C16012445 @default.
- W3101472415 hasConcept C22243797 @default.
- W3101472415 hasConcept C28826006 @default.
- W3101472415 hasConcept C33923547 @default.
- W3101472415 hasConcept C3770464 @default.
- W3101472415 hasConcept C41008148 @default.
- W3101472415 hasConcept C41587187 @default.
- W3101472415 hasConceptScore W3101472415C105795698 @default.
- W3101472415 hasConceptScore W3101472415C107673813 @default.
- W3101472415 hasConceptScore W3101472415C111350023 @default.
- W3101472415 hasConceptScore W3101472415C11413529 @default.
- W3101472415 hasConceptScore W3101472415C153720581 @default.
- W3101472415 hasConceptScore W3101472415C16012445 @default.
- W3101472415 hasConceptScore W3101472415C22243797 @default.
- W3101472415 hasConceptScore W3101472415C28826006 @default.