Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101479632> ?p ?o ?g. }
- W3101479632 endingPage "1328" @default.
- W3101479632 startingPage "1313" @default.
- W3101479632 abstract "One of the most important industries and building operations that cause carbon dioxide emissions is the cement and concrete-related industries that consume about 6 million Btus per metric ton and release about 1 metric ton CO2. Reducing cement consumption while using nanomaterials as cement replacement is favored for environmental protection reasons. In this study, the effect of nanoclay (NC) as an additive to the cement paste was evaluated and quantified. Scanning Electronic Microscope (SEM), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Fourier-Transform Infrared Spectroscopy (FTIR), and Raman Spectroscopy analysis were used to identify the cement and nanoclay. Experimental tests and modeling were conducted to predict the cement paste's flow properties like yield stress, shear strength (shear stress limit), viscosity, and stress at the failure stress of cement paste. The cement paste modified with nanoclay was tested at a water-to-cement ratio (w/c) of 0.35 and 0.45 and temperatures ranging from 25⁰C to 75⁰C. The addition of NC increased the ultimate shear strength (τmax) and the yield stress (τo) from 22.5% to 54.4% and from 26.3% to 203%, respectively based on the NC content, w/c, and temperature. TGA tests showed that the 1% nanoclay additive reduces the weight loss of the cement at 800⁰C by 74% due to the interaction with the nanoclay with the cement paste. The nonlinear regressions model (NLR), and Artificial Neural Network (ANN) technical approaches were used for the qualifications of the flow of slurry and stress at the failure of the cement paste modified with nanoclay. Based on the static analysis assessments, the rheological properties and compressive strength of cement paste modified with nanoclay can be well predicted in terms of w/c, nanoclay content, temperature, and curing time using two different simulation techniques. Among the used approaches and based on the experimental data set, the model made based on the NLR models is the most reliable model to predict rheological properties and compression strength of the cement and it is performing better than the ANN model. The coefficient of the correlation (R), mean absolute error (MAE), and root mean square error (RMSE) concluded that the nanoclay content is the most important parameter for rheological estimation and compression strength of cement paste." @default.
- W3101479632 created "2020-11-23" @default.
- W3101479632 creator A5011585434 @default.
- W3101479632 creator A5014677722 @default.
- W3101479632 creator A5047429732 @default.
- W3101479632 creator A5071177294 @default.
- W3101479632 creator A5071708790 @default.
- W3101479632 creator A5082813710 @default.
- W3101479632 creator A5089069178 @default.
- W3101479632 date "2021-06-01" @default.
- W3101479632 modified "2023-10-16" @default.
- W3101479632 title "Artificial Neural Network and NLR techniques to predict the rheological properties and compression strength of cement past modified with nanoclay" @default.
- W3101479632 cites W1963841206 @default.
- W3101479632 cites W1967153117 @default.
- W3101479632 cites W1967366211 @default.
- W3101479632 cites W1968538030 @default.
- W3101479632 cites W2006510131 @default.
- W3101479632 cites W2016235146 @default.
- W3101479632 cites W2025370614 @default.
- W3101479632 cites W2025746666 @default.
- W3101479632 cites W2037418424 @default.
- W3101479632 cites W2040952559 @default.
- W3101479632 cites W2050325206 @default.
- W3101479632 cites W2052321038 @default.
- W3101479632 cites W2063819785 @default.
- W3101479632 cites W2080049700 @default.
- W3101479632 cites W20913276 @default.
- W3101479632 cites W2102148524 @default.
- W3101479632 cites W2104204565 @default.
- W3101479632 cites W2114368359 @default.
- W3101479632 cites W2147705261 @default.
- W3101479632 cites W2288565543 @default.
- W3101479632 cites W2295534647 @default.
- W3101479632 cites W2549340331 @default.
- W3101479632 cites W2566786321 @default.
- W3101479632 cites W2589910269 @default.
- W3101479632 cites W2610090978 @default.
- W3101479632 cites W2620905523 @default.
- W3101479632 cites W2745037158 @default.
- W3101479632 cites W2745163146 @default.
- W3101479632 cites W2783647757 @default.
- W3101479632 cites W2793519446 @default.
- W3101479632 cites W2802796954 @default.
- W3101479632 cites W2885558847 @default.
- W3101479632 cites W2888450872 @default.
- W3101479632 cites W2911835771 @default.
- W3101479632 cites W2950226045 @default.
- W3101479632 cites W2959441206 @default.
- W3101479632 cites W2967745383 @default.
- W3101479632 cites W2971075366 @default.
- W3101479632 cites W2981583977 @default.
- W3101479632 cites W2987148662 @default.
- W3101479632 cites W2990190635 @default.
- W3101479632 cites W2994098471 @default.
- W3101479632 cites W2995619079 @default.
- W3101479632 cites W3000653208 @default.
- W3101479632 cites W3009127777 @default.
- W3101479632 cites W3009141565 @default.
- W3101479632 cites W3009863180 @default.
- W3101479632 cites W3027998059 @default.
- W3101479632 cites W3169888812 @default.
- W3101479632 cites W4230547316 @default.
- W3101479632 doi "https://doi.org/10.1016/j.asej.2020.07.033" @default.
- W3101479632 hasPublicationYear "2021" @default.
- W3101479632 type Work @default.
- W3101479632 sameAs 3101479632 @default.
- W3101479632 citedByCount "29" @default.
- W3101479632 countsByYear W31014796322021 @default.
- W3101479632 countsByYear W31014796322022 @default.
- W3101479632 countsByYear W31014796322023 @default.
- W3101479632 crossrefType "journal-article" @default.
- W3101479632 hasAuthorship W3101479632A5011585434 @default.
- W3101479632 hasAuthorship W3101479632A5014677722 @default.
- W3101479632 hasAuthorship W3101479632A5047429732 @default.
- W3101479632 hasAuthorship W3101479632A5071177294 @default.
- W3101479632 hasAuthorship W3101479632A5071708790 @default.
- W3101479632 hasAuthorship W3101479632A5082813710 @default.
- W3101479632 hasAuthorship W3101479632A5089069178 @default.
- W3101479632 hasBestOaLocation W31014796321 @default.
- W3101479632 hasConcept C127413603 @default.
- W3101479632 hasConcept C134121241 @default.
- W3101479632 hasConcept C159985019 @default.
- W3101479632 hasConcept C160892712 @default.
- W3101479632 hasConcept C192562407 @default.
- W3101479632 hasConcept C200990466 @default.
- W3101479632 hasConcept C42360764 @default.
- W3101479632 hasConcept C523993062 @default.
- W3101479632 hasConcept C60100273 @default.
- W3101479632 hasConcept C94293008 @default.
- W3101479632 hasConceptScore W3101479632C127413603 @default.
- W3101479632 hasConceptScore W3101479632C134121241 @default.
- W3101479632 hasConceptScore W3101479632C159985019 @default.
- W3101479632 hasConceptScore W3101479632C160892712 @default.
- W3101479632 hasConceptScore W3101479632C192562407 @default.
- W3101479632 hasConceptScore W3101479632C200990466 @default.
- W3101479632 hasConceptScore W3101479632C42360764 @default.
- W3101479632 hasConceptScore W3101479632C523993062 @default.
- W3101479632 hasConceptScore W3101479632C60100273 @default.