Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101699656> ?p ?o ?g. }
- W3101699656 endingPage "182" @default.
- W3101699656 startingPage "182" @default.
- W3101699656 abstract "Machine learning allows efficient extraction of physical properties from stellar spectra that have been obtained by large surveys. The viability of ML approaches has been demonstrated for spectra covering a variety of wavelengths and spectral resolutions, but most often for main sequence or evolved stars, where reliable synthetic spectra provide labels and data for training. Spectral models of young stellar objects (YSOs) and low mass main sequence (MS) stars are less well-matched to their empirical counterparts, however, posing barriers to previous approaches to classify spectra of such stars. In this work we generate labels for YSOs and low mass MS stars through their photometry. We then use these labels to train a deep convolutional neural network to predict log g, Teff, and Fe/H for stars with APOGEE spectra in the DR14 dataset. This APOGEE Net has produced reliable predictions of log g for YSOs, with uncertainties of within 0.1 dex and a good agreement with the structure indicated by pre-main sequence evolutionary tracks, and correlate well with independently derived stellar radii. These values will be useful for studying pre-main sequence stellar populations to accurately diagnose membership and ages." @default.
- W3101699656 created "2020-11-23" @default.
- W3101699656 creator A5002281071 @default.
- W3101699656 creator A5007479355 @default.
- W3101699656 creator A5013640089 @default.
- W3101699656 creator A5033912251 @default.
- W3101699656 creator A5034596517 @default.
- W3101699656 creator A5064093268 @default.
- W3101699656 creator A5077870084 @default.
- W3101699656 creator A5081154487 @default.
- W3101699656 creator A5088359901 @default.
- W3101699656 date "2020-03-31" @default.
- W3101699656 modified "2023-10-16" @default.
- W3101699656 title "APOGEE Net: Improving the Derived Spectral Parameters for Young Stars through Deep Learning" @default.
- W3101699656 cites W1531115531 @default.
- W3101699656 cites W1582881973 @default.
- W3101699656 cites W1836177459 @default.
- W3101699656 cites W1970950719 @default.
- W3101699656 cites W2025816981 @default.
- W3101699656 cites W2029343094 @default.
- W3101699656 cites W2031603500 @default.
- W3101699656 cites W2063568047 @default.
- W3101699656 cites W2072468297 @default.
- W3101699656 cites W2074559645 @default.
- W3101699656 cites W2269157750 @default.
- W3101699656 cites W2340349270 @default.
- W3101699656 cites W2344233738 @default.
- W3101699656 cites W2514854154 @default.
- W3101699656 cites W2517381349 @default.
- W3101699656 cites W2589485396 @default.
- W3101699656 cites W2593224863 @default.
- W3101699656 cites W2597993038 @default.
- W3101699656 cites W2740236269 @default.
- W3101699656 cites W2740853133 @default.
- W3101699656 cites W2757022617 @default.
- W3101699656 cites W2798158223 @default.
- W3101699656 cites W2798336535 @default.
- W3101699656 cites W2802440906 @default.
- W3101699656 cites W2885274016 @default.
- W3101699656 cites W2949380767 @default.
- W3101699656 cites W2962956164 @default.
- W3101699656 cites W2963974970 @default.
- W3101699656 cites W2987499710 @default.
- W3101699656 cites W3000704192 @default.
- W3101699656 cites W3099698024 @default.
- W3101699656 cites W3099975694 @default.
- W3101699656 cites W3100174716 @default.
- W3101699656 cites W3100316523 @default.
- W3101699656 cites W3101365627 @default.
- W3101699656 cites W3101463779 @default.
- W3101699656 cites W3101482359 @default.
- W3101699656 cites W3101781068 @default.
- W3101699656 cites W3101862101 @default.
- W3101699656 cites W3102552291 @default.
- W3101699656 cites W3102568022 @default.
- W3101699656 cites W3104346500 @default.
- W3101699656 cites W3104487718 @default.
- W3101699656 cites W3104542759 @default.
- W3101699656 cites W3105595756 @default.
- W3101699656 cites W3106124999 @default.
- W3101699656 cites W4293107596 @default.
- W3101699656 cites W4297889162 @default.
- W3101699656 doi "https://doi.org/10.3847/1538-3881/ab7a97" @default.
- W3101699656 hasPublicationYear "2020" @default.
- W3101699656 type Work @default.
- W3101699656 sameAs 3101699656 @default.
- W3101699656 citedByCount "27" @default.
- W3101699656 countsByYear W31016996562020 @default.
- W3101699656 countsByYear W31016996562021 @default.
- W3101699656 countsByYear W31016996562022 @default.
- W3101699656 countsByYear W31016996562023 @default.
- W3101699656 crossrefType "journal-article" @default.
- W3101699656 hasAuthorship W3101699656A5002281071 @default.
- W3101699656 hasAuthorship W3101699656A5007479355 @default.
- W3101699656 hasAuthorship W3101699656A5013640089 @default.
- W3101699656 hasAuthorship W3101699656A5033912251 @default.
- W3101699656 hasAuthorship W3101699656A5034596517 @default.
- W3101699656 hasAuthorship W3101699656A5064093268 @default.
- W3101699656 hasAuthorship W3101699656A5077870084 @default.
- W3101699656 hasAuthorship W3101699656A5081154487 @default.
- W3101699656 hasAuthorship W3101699656A5088359901 @default.
- W3101699656 hasBestOaLocation W31016996561 @default.
- W3101699656 hasConcept C121332964 @default.
- W3101699656 hasConcept C125857072 @default.
- W3101699656 hasConcept C1276947 @default.
- W3101699656 hasConcept C131432281 @default.
- W3101699656 hasConcept C150846664 @default.
- W3101699656 hasConcept C154945302 @default.
- W3101699656 hasConcept C180690934 @default.
- W3101699656 hasConcept C23254167 @default.
- W3101699656 hasConcept C41008148 @default.
- W3101699656 hasConcept C44870925 @default.
- W3101699656 hasConcept C4839761 @default.
- W3101699656 hasConcept C56956389 @default.
- W3101699656 hasConcept C68271606 @default.
- W3101699656 hasConceptScore W3101699656C121332964 @default.
- W3101699656 hasConceptScore W3101699656C125857072 @default.
- W3101699656 hasConceptScore W3101699656C1276947 @default.