Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101712992> ?p ?o ?g. }
- W3101712992 endingPage "961" @default.
- W3101712992 startingPage "955" @default.
- W3101712992 abstract "Objective: To develop a deep learning model to automatically segment hepatocystic anatomy and assess the criteria defining the critical view of safety (CVS) in laparoscopic cholecystectomy (LC). Background: Poor implementation and subjective interpretation of CVS contributes to the stable rates of bile duct injuries in LC. As CVS is assessed visually, this task can be automated by using computer vision, an area of artificial intelligence aimed at interpreting images. Methods: Still images from LC videos were annotated with CVS criteria and hepatocystic anatomy segmentation. A deep neural network comprising a segmentation model to highlight hepatocystic anatomy and a classification model to predict CVS criteria achievement was trained and tested using 5-fold cross validation. Intersection over union, average precision, and balanced accuracy were computed to evaluate the model performance versus the annotated ground truth. Results: A total of 2854 images from 201 LC videos were annotated and 402 images were further segmented. Mean intersection over union for segmentation was 66.6%. The model assessed the achievement of CVS criteria with a mean average precision and balanced accuracy of 71.9% and 71.4%, respectively. Conclusions: Deep learning algorithms can be trained to reliably segment hepatocystic anatomy and assess CVS criteria in still laparoscopic images. Surgical-technical partnerships should be encouraged to develop and evaluate deep learning models to improve surgical safety." @default.
- W3101712992 created "2020-11-23" @default.
- W3101712992 creator A5008811522 @default.
- W3101712992 creator A5015981897 @default.
- W3101712992 creator A5030505593 @default.
- W3101712992 creator A5038536873 @default.
- W3101712992 creator A5056815261 @default.
- W3101712992 creator A5056826607 @default.
- W3101712992 creator A5070971840 @default.
- W3101712992 creator A5071976104 @default.
- W3101712992 creator A5081046634 @default.
- W3101712992 creator A5081252567 @default.
- W3101712992 creator A5086342182 @default.
- W3101712992 creator A5087529010 @default.
- W3101712992 date "2020-11-16" @default.
- W3101712992 modified "2023-10-06" @default.
- W3101712992 title "Artificial Intelligence for Surgical Safety" @default.
- W3101712992 cites W1980648912 @default.
- W3101712992 cites W2004412341 @default.
- W3101712992 cites W2010407658 @default.
- W3101712992 cites W2023041189 @default.
- W3101712992 cites W2037227137 @default.
- W3101712992 cites W2057302530 @default.
- W3101712992 cites W2057323869 @default.
- W3101712992 cites W2064553186 @default.
- W3101712992 cites W2073341070 @default.
- W3101712992 cites W2074688882 @default.
- W3101712992 cites W2136720959 @default.
- W3101712992 cites W2137914002 @default.
- W3101712992 cites W2157896248 @default.
- W3101712992 cites W2188607376 @default.
- W3101712992 cites W2345863494 @default.
- W3101712992 cites W2492540124 @default.
- W3101712992 cites W2548689973 @default.
- W3101712992 cites W2580456502 @default.
- W3101712992 cites W2592929672 @default.
- W3101712992 cites W2766515924 @default.
- W3101712992 cites W2767047725 @default.
- W3101712992 cites W2785737326 @default.
- W3101712992 cites W2809487627 @default.
- W3101712992 cites W2809689773 @default.
- W3101712992 cites W2888438825 @default.
- W3101712992 cites W2921303908 @default.
- W3101712992 cites W2958914562 @default.
- W3101712992 cites W2966116905 @default.
- W3101712992 cites W2978826643 @default.
- W3101712992 cites W2980205896 @default.
- W3101712992 cites W3103685091 @default.
- W3101712992 cites W4229897039 @default.
- W3101712992 cites W4243063216 @default.
- W3101712992 doi "https://doi.org/10.1097/sla.0000000000004351" @default.
- W3101712992 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33201104" @default.
- W3101712992 hasPublicationYear "2020" @default.
- W3101712992 type Work @default.
- W3101712992 sameAs 3101712992 @default.
- W3101712992 citedByCount "86" @default.
- W3101712992 countsByYear W31017129922021 @default.
- W3101712992 countsByYear W31017129922022 @default.
- W3101712992 countsByYear W31017129922023 @default.
- W3101712992 crossrefType "journal-article" @default.
- W3101712992 hasAuthorship W3101712992A5008811522 @default.
- W3101712992 hasAuthorship W3101712992A5015981897 @default.
- W3101712992 hasAuthorship W3101712992A5030505593 @default.
- W3101712992 hasAuthorship W3101712992A5038536873 @default.
- W3101712992 hasAuthorship W3101712992A5056815261 @default.
- W3101712992 hasAuthorship W3101712992A5056826607 @default.
- W3101712992 hasAuthorship W3101712992A5070971840 @default.
- W3101712992 hasAuthorship W3101712992A5071976104 @default.
- W3101712992 hasAuthorship W3101712992A5081046634 @default.
- W3101712992 hasAuthorship W3101712992A5081252567 @default.
- W3101712992 hasAuthorship W3101712992A5086342182 @default.
- W3101712992 hasAuthorship W3101712992A5087529010 @default.
- W3101712992 hasConcept C108583219 @default.
- W3101712992 hasConcept C146849305 @default.
- W3101712992 hasConcept C154945302 @default.
- W3101712992 hasConcept C205649164 @default.
- W3101712992 hasConcept C41008148 @default.
- W3101712992 hasConcept C58640448 @default.
- W3101712992 hasConcept C64543145 @default.
- W3101712992 hasConcept C71924100 @default.
- W3101712992 hasConcept C89600930 @default.
- W3101712992 hasConceptScore W3101712992C108583219 @default.
- W3101712992 hasConceptScore W3101712992C146849305 @default.
- W3101712992 hasConceptScore W3101712992C154945302 @default.
- W3101712992 hasConceptScore W3101712992C205649164 @default.
- W3101712992 hasConceptScore W3101712992C41008148 @default.
- W3101712992 hasConceptScore W3101712992C58640448 @default.
- W3101712992 hasConceptScore W3101712992C64543145 @default.
- W3101712992 hasConceptScore W3101712992C71924100 @default.
- W3101712992 hasConceptScore W3101712992C89600930 @default.
- W3101712992 hasIssue "5" @default.
- W3101712992 hasLocation W31017129921 @default.
- W3101712992 hasLocation W31017129922 @default.
- W3101712992 hasLocation W31017129923 @default.
- W3101712992 hasLocation W31017129924 @default.
- W3101712992 hasOpenAccess W3101712992 @default.
- W3101712992 hasPrimaryLocation W31017129921 @default.
- W3101712992 hasRelatedWork W1982685118 @default.