Matches in SemOpenAlex for { <https://semopenalex.org/work/W31017403> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W31017403 abstract "Codes derived from algebraic curves are called algebraic geometry (AG) codes. They provide a way to correct errors which occur during transmission of information. This paper will concentrate on the decoding of algebraic geometry codes, in other words, how to find errors. We begin with a brief overview of some classical result in algebra as well as the definition of algebraic geometry codes. Then the theory of cyclic codes and BCH codes will be presented. We discuss the problem of finding the shortest linear feedback shift register (LFSR) which generates a given finite sequence. A decoding algorithm for BCH codes is the Berlekamp-Massey algorithm. This algorithm has complexity O(n^2) and provides a general solution to the problem of finding the shortest LFSR that generates a given sequence (which usually has running time O(n^3)). This algorithm may also be used for AG codes. Further we proceed with algorithms for decoding AG codes. The first algorithm for decoding algebraic geometry codes which we discuss is the so called basic decoding algorithm. This algorithm depends on the choice of a suitable divisor F. By creating a linear system of equation from the bases of spaces with prescribed zeroes and allowed poles we can find an error-locator function which contains all the error positions among its zeros. We find that this algorithm can correct up to (d* - 1 - g)/2 errors and have a running time of O(n^3). From this algorithm two other algorithms which improve on the error correcting capability are developed. The first algorithm developed from the basic algorithm is the modified algorithm. This algorithm depends on a restriction on the divisors which are used to build the code and an increasing sequence of divisors F1, ... , Fs. This gives rise to an algorithm which can correct up to (d*-1)/2 -S(H) errors and have a complexity of O(n^4). The correction rate of this algorithm is larger than the rate for the basic algorithm but it runs slower. The extended modified algorithm is created by the use of what we refer to as special divisors. We choose the divisors in the sequence of the modified algorithm to have certain properties so that the algorithm runs faster. When s(E) is the Clifford's defect of a set E of special divisor, the extended modified algorithm corrects up to (d*-1)/2 -s(E) which is an improvement from the basic algorithm. The running time of the algorithm is O(n^3). The last algorithm we present is the Sudan-Guruswami list decoding algorithm. This algorithm searches for all possible code words within a certain distance from the received word. We show that AG codes are (e,b)-decodable and that the algorithm in most cases has a a higher correction rate than the other algorithms presented here." @default.
- W31017403 created "2016-06-24" @default.
- W31017403 creator A5081066375 @default.
- W31017403 date "2011-01-01" @default.
- W31017403 modified "2023-10-18" @default.
- W31017403 title "Decoding of Algebraic Geometry Codes" @default.
- W31017403 cites W1483218536 @default.
- W31017403 cites W1486898453 @default.
- W31017403 cites W1511314663 @default.
- W31017403 cites W1523237299 @default.
- W31017403 cites W1535801681 @default.
- W31017403 cites W1539639015 @default.
- W31017403 cites W1557415002 @default.
- W31017403 cites W1559343931 @default.
- W31017403 cites W1565495400 @default.
- W31017403 cites W1565956743 @default.
- W31017403 cites W1592482282 @default.
- W31017403 cites W1828839365 @default.
- W31017403 cites W1980117595 @default.
- W31017403 cites W2016833807 @default.
- W31017403 cites W2073252313 @default.
- W31017403 cites W2082380954 @default.
- W31017403 cites W2097821905 @default.
- W31017403 cites W2105882027 @default.
- W31017403 cites W2113142402 @default.
- W31017403 cites W2147731984 @default.
- W31017403 cites W2167361083 @default.
- W31017403 cites W2985767532 @default.
- W31017403 cites W602346133 @default.
- W31017403 cites W625593473 @default.
- W31017403 hasPublicationYear "2011" @default.
- W31017403 type Work @default.
- W31017403 sameAs 31017403 @default.
- W31017403 citedByCount "0" @default.
- W31017403 crossrefType "dissertation" @default.
- W31017403 hasAuthorship W31017403A5081066375 @default.
- W31017403 hasConcept C11413529 @default.
- W31017403 hasConcept C118615104 @default.
- W31017403 hasConcept C132727834 @default.
- W31017403 hasConcept C157125643 @default.
- W31017403 hasConcept C193969084 @default.
- W31017403 hasConcept C204397858 @default.
- W31017403 hasConcept C2400350 @default.
- W31017403 hasConcept C2524010 @default.
- W31017403 hasConcept C2778112365 @default.
- W31017403 hasConcept C33923547 @default.
- W31017403 hasConcept C42276685 @default.
- W31017403 hasConcept C54355233 @default.
- W31017403 hasConcept C57273362 @default.
- W31017403 hasConcept C68363185 @default.
- W31017403 hasConcept C78944582 @default.
- W31017403 hasConcept C86803240 @default.
- W31017403 hasConceptScore W31017403C11413529 @default.
- W31017403 hasConceptScore W31017403C118615104 @default.
- W31017403 hasConceptScore W31017403C132727834 @default.
- W31017403 hasConceptScore W31017403C157125643 @default.
- W31017403 hasConceptScore W31017403C193969084 @default.
- W31017403 hasConceptScore W31017403C204397858 @default.
- W31017403 hasConceptScore W31017403C2400350 @default.
- W31017403 hasConceptScore W31017403C2524010 @default.
- W31017403 hasConceptScore W31017403C2778112365 @default.
- W31017403 hasConceptScore W31017403C33923547 @default.
- W31017403 hasConceptScore W31017403C42276685 @default.
- W31017403 hasConceptScore W31017403C54355233 @default.
- W31017403 hasConceptScore W31017403C57273362 @default.
- W31017403 hasConceptScore W31017403C68363185 @default.
- W31017403 hasConceptScore W31017403C78944582 @default.
- W31017403 hasConceptScore W31017403C86803240 @default.
- W31017403 hasLocation W310174031 @default.
- W31017403 hasOpenAccess W31017403 @default.
- W31017403 hasPrimaryLocation W310174031 @default.
- W31017403 hasRelatedWork W10380459 @default.
- W31017403 hasRelatedWork W172634460 @default.
- W31017403 hasRelatedWork W1990715499 @default.
- W31017403 hasRelatedWork W1996447801 @default.
- W31017403 hasRelatedWork W2022022631 @default.
- W31017403 hasRelatedWork W2026698357 @default.
- W31017403 hasRelatedWork W2059372197 @default.
- W31017403 hasRelatedWork W2068593329 @default.
- W31017403 hasRelatedWork W2125835953 @default.
- W31017403 hasRelatedWork W2126280534 @default.
- W31017403 hasRelatedWork W2150062566 @default.
- W31017403 hasRelatedWork W2174607557 @default.
- W31017403 hasRelatedWork W2293080102 @default.
- W31017403 hasRelatedWork W2394693224 @default.
- W31017403 hasRelatedWork W2403386049 @default.
- W31017403 hasRelatedWork W2404610033 @default.
- W31017403 hasRelatedWork W2765921567 @default.
- W31017403 hasRelatedWork W2897250126 @default.
- W31017403 hasRelatedWork W2952574710 @default.
- W31017403 hasRelatedWork W2963279851 @default.
- W31017403 isParatext "false" @default.
- W31017403 isRetracted "false" @default.
- W31017403 magId "31017403" @default.
- W31017403 workType "dissertation" @default.