Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101843593> ?p ?o ?g. }
- W3101843593 endingPage "18" @default.
- W3101843593 startingPage "1" @default.
- W3101843593 abstract "Multiple sclerosis disease is a main cause of non-traumatic disabilities and one of the most common neurological disorders in young adults over many countries. In this work, we introduce a survey study of the utilization of machine learning methods in Multiple Sclerosis early genetic disease detection methods incorporating Microarray data analysis and Single Nucleotide Polymorphism data analysis and explains in details the machine learning methods used in literature. In addition, this study demonstrates the future trends of Next Generation Sequencing data analysis in disease detection and sample datasets of each genetic detection method was included .in addition, the challenges facing genetic disease detection were elaborated." @default.
- W3101843593 created "2020-11-23" @default.
- W3101843593 creator A5022996923 @default.
- W3101843593 creator A5054198241 @default.
- W3101843593 creator A5075289643 @default.
- W3101843593 creator A5081506068 @default.
- W3101843593 date "2020-10-30" @default.
- W3101843593 modified "2023-10-17" @default.
- W3101843593 title "Machine Learning in Early Genetic Detection of Multiple Sclerosis Disease: A Survey" @default.
- W3101843593 cites W1503398984 @default.
- W3101843593 cites W1509268069 @default.
- W3101843593 cites W1528140509 @default.
- W3101843593 cites W1544923801 @default.
- W3101843593 cites W1683511521 @default.
- W3101843593 cites W2002212330 @default.
- W3101843593 cites W2008056655 @default.
- W3101843593 cites W2020541351 @default.
- W3101843593 cites W2030992801 @default.
- W3101843593 cites W2040426591 @default.
- W3101843593 cites W2050825109 @default.
- W3101843593 cites W2050914686 @default.
- W3101843593 cites W2055758752 @default.
- W3101843593 cites W2073828836 @default.
- W3101843593 cites W2074388642 @default.
- W3101843593 cites W2075312775 @default.
- W3101843593 cites W2078289899 @default.
- W3101843593 cites W2080918380 @default.
- W3101843593 cites W2082610780 @default.
- W3101843593 cites W2086213827 @default.
- W3101843593 cites W2113242816 @default.
- W3101843593 cites W2119821739 @default.
- W3101843593 cites W2131271579 @default.
- W3101843593 cites W2134783591 @default.
- W3101843593 cites W2139639280 @default.
- W3101843593 cites W2139740833 @default.
- W3101843593 cites W2157795344 @default.
- W3101843593 cites W2158416439 @default.
- W3101843593 cites W2161633633 @default.
- W3101843593 cites W2168630917 @default.
- W3101843593 cites W2175642482 @default.
- W3101843593 cites W2185967267 @default.
- W3101843593 cites W2234415481 @default.
- W3101843593 cites W2288073912 @default.
- W3101843593 cites W2402144811 @default.
- W3101843593 cites W2461991276 @default.
- W3101843593 cites W2462831000 @default.
- W3101843593 cites W2492513888 @default.
- W3101843593 cites W2509876630 @default.
- W3101843593 cites W2547279294 @default.
- W3101843593 cites W2552692316 @default.
- W3101843593 cites W2604975863 @default.
- W3101843593 cites W2712000194 @default.
- W3101843593 cites W2733399200 @default.
- W3101843593 cites W2738795499 @default.
- W3101843593 cites W2751843937 @default.
- W3101843593 cites W2790409288 @default.
- W3101843593 cites W2792596112 @default.
- W3101843593 cites W2822024738 @default.
- W3101843593 cites W2884205346 @default.
- W3101843593 cites W2899547849 @default.
- W3101843593 cites W2901365579 @default.
- W3101843593 cites W2911658427 @default.
- W3101843593 cites W2943959904 @default.
- W3101843593 cites W2950419643 @default.
- W3101843593 cites W2962772147 @default.
- W3101843593 cites W2983907048 @default.
- W3101843593 cites W2992200549 @default.
- W3101843593 cites W3002843465 @default.
- W3101843593 cites W3011696610 @default.
- W3101843593 cites W3016398438 @default.
- W3101843593 cites W3042066079 @default.
- W3101843593 cites W3110492984 @default.
- W3101843593 doi "https://doi.org/10.5121/ijcsit.2020.12501" @default.
- W3101843593 hasPublicationYear "2020" @default.
- W3101843593 type Work @default.
- W3101843593 sameAs 3101843593 @default.
- W3101843593 citedByCount "0" @default.
- W3101843593 crossrefType "journal-article" @default.
- W3101843593 hasAuthorship W3101843593A5022996923 @default.
- W3101843593 hasAuthorship W3101843593A5054198241 @default.
- W3101843593 hasAuthorship W3101843593A5075289643 @default.
- W3101843593 hasAuthorship W3101843593A5081506068 @default.
- W3101843593 hasBestOaLocation W31018435931 @default.
- W3101843593 hasConcept C118552586 @default.
- W3101843593 hasConcept C119857082 @default.
- W3101843593 hasConcept C142724271 @default.
- W3101843593 hasConcept C154945302 @default.
- W3101843593 hasConcept C2522767166 @default.
- W3101843593 hasConcept C2779134260 @default.
- W3101843593 hasConcept C2780640218 @default.
- W3101843593 hasConcept C2908647359 @default.
- W3101843593 hasConcept C2993807623 @default.
- W3101843593 hasConcept C41008148 @default.
- W3101843593 hasConcept C71924100 @default.
- W3101843593 hasConcept C99454951 @default.
- W3101843593 hasConceptScore W3101843593C118552586 @default.
- W3101843593 hasConceptScore W3101843593C119857082 @default.
- W3101843593 hasConceptScore W3101843593C142724271 @default.