Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101872715> ?p ?o ?g. }
- W3101872715 endingPage "4569" @default.
- W3101872715 startingPage "4548" @default.
- W3101872715 abstract "The LIPGENE-SU.VI.MAX study, like many others, recorded high-dimensional continuous phenotypic data and categorical genotypic data. LIPGENE-SU.VI.MAX focuses on the need to account for both phenotypic and genetic factors when studying the metabolic syndrome (MetS), a complex disorder that can lead to higher risk of type 2 diabetes and cardiovascular disease. Interest lies in clustering the LIPGENE-SU.VI.MAX participants into homogeneous groups or sub-phenotypes, by jointly considering their phenotypic and genotypic data, and in determining which variables are discriminatory. A novel latent variable model that elegantly accommodates high dimensional, mixed data is developed to cluster LIPGENE-SU.VI.MAX participants using a Bayesian finite mixture model. A computationally efficient variable selection algorithm is incorporated, estimation is via a Gibbs sampling algorithm and an approximate BIC-MCMC criterion is developed to select the optimal model. Two clusters or sub-phenotypes ('healthy' and 'at risk') are uncovered. A small subset of variables is deemed discriminatory, which notably includes phenotypic and genotypic variables, highlighting the need to jointly consider both factors. Further, 7 years after the LIPGENE-SU.VI.MAX data were collected, participants underwent further analysis to diagnose presence or absence of the MetS. The two uncovered sub-phenotypes strongly correspond to the 7-year follow-up disease classification, highlighting the role of phenotypic and genotypic factors in the MetS and emphasising the potential utility of the clustering approach in early screening. Additionally, the ability of the proposed approach to define the uncertainty in sub-phenotype membership at the participant level is synonymous with the concepts of precision medicine and nutrition. Copyright © 2017 John Wiley & Sons, Ltd." @default.
- W3101872715 created "2020-11-23" @default.
- W3101872715 creator A5003874766 @default.
- W3101872715 creator A5023335967 @default.
- W3101872715 creator A5033957848 @default.
- W3101872715 creator A5036449746 @default.
- W3101872715 creator A5060648458 @default.
- W3101872715 date "2017-06-30" @default.
- W3101872715 modified "2023-10-14" @default.
- W3101872715 title "Clustering high-dimensional mixed data to uncover sub-phenotypes: joint analysis of phenotypic and genotypic data" @default.
- W3101872715 cites W1511747216 @default.
- W3101872715 cites W1536497620 @default.
- W3101872715 cites W1547324788 @default.
- W3101872715 cites W1552710016 @default.
- W3101872715 cites W1573175260 @default.
- W3101872715 cites W1874360846 @default.
- W3101872715 cites W1941028167 @default.
- W3101872715 cites W1967456918 @default.
- W3101872715 cites W1968829891 @default.
- W3101872715 cites W1990643970 @default.
- W3101872715 cites W1991114278 @default.
- W3101872715 cites W1992283888 @default.
- W3101872715 cites W1992541105 @default.
- W3101872715 cites W1992719447 @default.
- W3101872715 cites W1993043426 @default.
- W3101872715 cites W1994225623 @default.
- W3101872715 cites W1994916925 @default.
- W3101872715 cites W1997069007 @default.
- W3101872715 cites W2002215420 @default.
- W3101872715 cites W2006027884 @default.
- W3101872715 cites W2011832962 @default.
- W3101872715 cites W2014674460 @default.
- W3101872715 cites W2017818759 @default.
- W3101872715 cites W2019486793 @default.
- W3101872715 cites W2020709681 @default.
- W3101872715 cites W2027837618 @default.
- W3101872715 cites W2029044503 @default.
- W3101872715 cites W2029721016 @default.
- W3101872715 cites W2031783089 @default.
- W3101872715 cites W2038429516 @default.
- W3101872715 cites W2038885294 @default.
- W3101872715 cites W2040729282 @default.
- W3101872715 cites W2045201988 @default.
- W3101872715 cites W2046257602 @default.
- W3101872715 cites W2047109555 @default.
- W3101872715 cites W2047555270 @default.
- W3101872715 cites W2049450804 @default.
- W3101872715 cites W2056243712 @default.
- W3101872715 cites W2057680047 @default.
- W3101872715 cites W2057964179 @default.
- W3101872715 cites W2066459332 @default.
- W3101872715 cites W2066887268 @default.
- W3101872715 cites W2068358331 @default.
- W3101872715 cites W2073753828 @default.
- W3101872715 cites W2075657928 @default.
- W3101872715 cites W2076250043 @default.
- W3101872715 cites W2076418098 @default.
- W3101872715 cites W2077760013 @default.
- W3101872715 cites W2082576445 @default.
- W3101872715 cites W2085573033 @default.
- W3101872715 cites W2096091969 @default.
- W3101872715 cites W2096715243 @default.
- W3101872715 cites W2106672539 @default.
- W3101872715 cites W2107732097 @default.
- W3101872715 cites W2107792665 @default.
- W3101872715 cites W2108306139 @default.
- W3101872715 cites W2110182275 @default.
- W3101872715 cites W2112521114 @default.
- W3101872715 cites W2113779710 @default.
- W3101872715 cites W2116932215 @default.
- W3101872715 cites W2122467621 @default.
- W3101872715 cites W2125328011 @default.
- W3101872715 cites W2127256767 @default.
- W3101872715 cites W2130717716 @default.
- W3101872715 cites W2133487567 @default.
- W3101872715 cites W2134507164 @default.
- W3101872715 cites W2141578651 @default.
- W3101872715 cites W2141934075 @default.
- W3101872715 cites W2150884987 @default.
- W3101872715 cites W2151802038 @default.
- W3101872715 cites W2152904625 @default.
- W3101872715 cites W2156242230 @default.
- W3101872715 cites W2159009886 @default.
- W3101872715 cites W2165884492 @default.
- W3101872715 cites W2168175751 @default.
- W3101872715 cites W2170836348 @default.
- W3101872715 cites W2208940044 @default.
- W3101872715 cites W2224746910 @default.
- W3101872715 cites W2333044651 @default.
- W3101872715 cites W2339428433 @default.
- W3101872715 cites W2488678869 @default.
- W3101872715 cites W2489543173 @default.
- W3101872715 cites W279682861 @default.
- W3101872715 cites W3098193298 @default.
- W3101872715 cites W3100838142 @default.
- W3101872715 cites W3103181292 @default.
- W3101872715 cites W3121957185 @default.
- W3101872715 cites W3125810650 @default.