Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102022877> ?p ?o ?g. }
- W3102022877 endingPage "114017" @default.
- W3102022877 startingPage "114017" @default.
- W3102022877 abstract "We develop an ultrawideband (UWB) inverse scattering technique for reconstructing continuous random media based on Bayesian compressive sensing. In addition to providing maximum a posteriori estimates of the unknown weights, Bayesian inversion provides estimate of the confidence level of the solution, as well as a systematic approach for optimizing subsequent measurement(s) to maximize information gain. We impose sparsity priors directly on spatial harmonics to exploit the spatial correlation exhibited by continuous media, and solve for their posterior probability density functions efficiently using a fast relevance vector machine. We linearize the problem using the first-order Born approximation which enables us to combine, in a single inversion, measurements from multiple transmitters and ultrawideband frequencies. We extend the method to high-contrast media using the distorted-Born iterative method. We apply time-reversal strategies to adaptively focus the inversion effort onto subdomains of interest, and hence reduce the overall inversion cost. The proposed techniques are illustrated in a number of canonical scenarios including crosshole and borehole sensing." @default.
- W3102022877 created "2020-11-23" @default.
- W3102022877 creator A5058699051 @default.
- W3102022877 creator A5089128627 @default.
- W3102022877 date "2014-10-29" @default.
- W3102022877 modified "2023-10-09" @default.
- W3102022877 title "Bayesian compressive sensing for ultrawideband inverse scattering in random media" @default.
- W3102022877 cites W1512208174 @default.
- W3102022877 cites W1973905471 @default.
- W3102022877 cites W1975490616 @default.
- W3102022877 cites W1989896884 @default.
- W3102022877 cites W1999292656 @default.
- W3102022877 cites W2001665419 @default.
- W3102022877 cites W2014018052 @default.
- W3102022877 cites W2020717058 @default.
- W3102022877 cites W2022477534 @default.
- W3102022877 cites W2046811824 @default.
- W3102022877 cites W2046898755 @default.
- W3102022877 cites W2049167479 @default.
- W3102022877 cites W2051344923 @default.
- W3102022877 cites W2069608984 @default.
- W3102022877 cites W2070971853 @default.
- W3102022877 cites W2071284784 @default.
- W3102022877 cites W2074876947 @default.
- W3102022877 cites W2082476922 @default.
- W3102022877 cites W2095310813 @default.
- W3102022877 cites W2099111195 @default.
- W3102022877 cites W2103001188 @default.
- W3102022877 cites W2109112241 @default.
- W3102022877 cites W2115159269 @default.
- W3102022877 cites W2119667497 @default.
- W3102022877 cites W2127107265 @default.
- W3102022877 cites W2128580630 @default.
- W3102022877 cites W2129248531 @default.
- W3102022877 cites W2132947894 @default.
- W3102022877 cites W2136207971 @default.
- W3102022877 cites W2140497302 @default.
- W3102022877 cites W2143341492 @default.
- W3102022877 cites W2143368686 @default.
- W3102022877 cites W2146922163 @default.
- W3102022877 cites W2147465462 @default.
- W3102022877 cites W2151350181 @default.
- W3102022877 cites W2152682742 @default.
- W3102022877 cites W2158162544 @default.
- W3102022877 cites W2159598897 @default.
- W3102022877 cites W2163855704 @default.
- W3102022877 cites W2168331961 @default.
- W3102022877 cites W2511885285 @default.
- W3102022877 cites W4229750588 @default.
- W3102022877 cites W4256188663 @default.
- W3102022877 cites W656046707 @default.
- W3102022877 cites W2170225857 @default.
- W3102022877 doi "https://doi.org/10.1088/0266-5611/30/11/114017" @default.
- W3102022877 hasPublicationYear "2014" @default.
- W3102022877 type Work @default.
- W3102022877 sameAs 3102022877 @default.
- W3102022877 citedByCount "19" @default.
- W3102022877 countsByYear W31020228772014 @default.
- W3102022877 countsByYear W31020228772015 @default.
- W3102022877 countsByYear W31020228772016 @default.
- W3102022877 countsByYear W31020228772017 @default.
- W3102022877 countsByYear W31020228772018 @default.
- W3102022877 countsByYear W31020228772019 @default.
- W3102022877 countsByYear W31020228772020 @default.
- W3102022877 countsByYear W31020228772021 @default.
- W3102022877 countsByYear W31020228772022 @default.
- W3102022877 crossrefType "journal-article" @default.
- W3102022877 hasAuthorship W3102022877A5058699051 @default.
- W3102022877 hasAuthorship W3102022877A5089128627 @default.
- W3102022877 hasBestOaLocation W31020228772 @default.
- W3102022877 hasConcept C105795698 @default.
- W3102022877 hasConcept C107673813 @default.
- W3102022877 hasConcept C109007969 @default.
- W3102022877 hasConcept C111472728 @default.
- W3102022877 hasConcept C11413529 @default.
- W3102022877 hasConcept C120665830 @default.
- W3102022877 hasConcept C121332964 @default.
- W3102022877 hasConcept C124851039 @default.
- W3102022877 hasConcept C126255220 @default.
- W3102022877 hasConcept C127313418 @default.
- W3102022877 hasConcept C134306372 @default.
- W3102022877 hasConcept C135252773 @default.
- W3102022877 hasConcept C138885662 @default.
- W3102022877 hasConcept C151730666 @default.
- W3102022877 hasConcept C174558057 @default.
- W3102022877 hasConcept C177769412 @default.
- W3102022877 hasConcept C1893757 @default.
- W3102022877 hasConcept C191486275 @default.
- W3102022877 hasConcept C2778049539 @default.
- W3102022877 hasConcept C33923547 @default.
- W3102022877 hasConcept C41008148 @default.
- W3102022877 hasConcept C49781872 @default.
- W3102022877 hasConcept C57830394 @default.
- W3102022877 hasConcept C71083448 @default.
- W3102022877 hasConcept C75553542 @default.
- W3102022877 hasConcept C9810830 @default.
- W3102022877 hasConceptScore W3102022877C105795698 @default.
- W3102022877 hasConceptScore W3102022877C107673813 @default.