Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102051688> ?p ?o ?g. }
- W3102051688 endingPage "901" @default.
- W3102051688 startingPage "887" @default.
- W3102051688 abstract "Bearings are the most widely used mechanical parts in rotating machinery under high load and high rotational speeds. Operating continuously under such harsh conditions, wear and failure are imminent. Developing defects give rise to even-higher vibration and temperature levels. In general, mechanical defects in a machine cause high vibration levels. Therefore, bearing fault identification and early detection enables the maintenance team to repair the problem before it triggers catastrophic failure in the bearing. Machine downtime is thus avoided or minimized. This paper explores the use of Machine Learning (ML) integrated with decision-making techniques to predict possible bearing failures and improve the overall manufacturing operations by applying the correct maintenance actions at the right time. The accuracy of the Predictive Maintenance (PdM) module has been tested on real industrial production datasets. The paper proposes an effective PdM methodology using different ML algorithms to detect failures before they happen and reduce pump downtime. The performance of the tested ML algorithms is based on five performance indicators: accuracy, precision, F-score, recall, and an area under curve (AUC). Experimental results revealed that all tested ML algorithms are successful and effective. Furthermore, decision making with utility theory has been employed to exploit the probability of failures and thus help to perform the appropriate maintenance interventions. This provides a logical framework for decision-makers to identify the optimum action with the maximum expected benefit. As a case study, the model is applied on forwarding pumping stations belonging to the Sewerage Treatment Company (STC), one of the largest sewage stations in Qatar." @default.
- W3102051688 created "2020-11-23" @default.
- W3102051688 creator A5014289555 @default.
- W3102051688 creator A5033411611 @default.
- W3102051688 date "2020-11-13" @default.
- W3102051688 modified "2023-10-01" @default.
- W3102051688 title "An integrated machine learning: Utility theory framework for real-time predictive maintenance in pumping systems" @default.
- W3102051688 cites W1974740361 @default.
- W3102051688 cites W1978201004 @default.
- W3102051688 cites W1981433115 @default.
- W3102051688 cites W1989006121 @default.
- W3102051688 cites W1989257562 @default.
- W3102051688 cites W1993898831 @default.
- W3102051688 cites W1999393241 @default.
- W3102051688 cites W2012634158 @default.
- W3102051688 cites W2020155612 @default.
- W3102051688 cites W2021909145 @default.
- W3102051688 cites W2026718739 @default.
- W3102051688 cites W2028200297 @default.
- W3102051688 cites W2039125545 @default.
- W3102051688 cites W2045914271 @default.
- W3102051688 cites W2050252315 @default.
- W3102051688 cites W2060303320 @default.
- W3102051688 cites W2073028428 @default.
- W3102051688 cites W2079102177 @default.
- W3102051688 cites W2081732958 @default.
- W3102051688 cites W2088385354 @default.
- W3102051688 cites W2088794999 @default.
- W3102051688 cites W2089768599 @default.
- W3102051688 cites W2092721384 @default.
- W3102051688 cites W2093194435 @default.
- W3102051688 cites W2094848836 @default.
- W3102051688 cites W2096352448 @default.
- W3102051688 cites W2101407763 @default.
- W3102051688 cites W2114330824 @default.
- W3102051688 cites W2131065845 @default.
- W3102051688 cites W2152319761 @default.
- W3102051688 cites W2159039180 @default.
- W3102051688 cites W2170020415 @default.
- W3102051688 cites W2170505850 @default.
- W3102051688 cites W2204168354 @default.
- W3102051688 cites W2222570178 @default.
- W3102051688 cites W2338952513 @default.
- W3102051688 cites W2484894751 @default.
- W3102051688 cites W2487770199 @default.
- W3102051688 cites W2547945433 @default.
- W3102051688 cites W2549591420 @default.
- W3102051688 cites W2593912973 @default.
- W3102051688 cites W2594650647 @default.
- W3102051688 cites W2600283457 @default.
- W3102051688 cites W2613421354 @default.
- W3102051688 cites W2618546706 @default.
- W3102051688 cites W2620512989 @default.
- W3102051688 cites W2626158806 @default.
- W3102051688 cites W2759531725 @default.
- W3102051688 cites W2761130655 @default.
- W3102051688 cites W2766440025 @default.
- W3102051688 cites W2771253845 @default.
- W3102051688 cites W2808548605 @default.
- W3102051688 cites W2888844977 @default.
- W3102051688 cites W2899480001 @default.
- W3102051688 cites W2900470244 @default.
- W3102051688 cites W2909840388 @default.
- W3102051688 cites W2913277459 @default.
- W3102051688 cites W2914489277 @default.
- W3102051688 cites W2921142294 @default.
- W3102051688 cites W2938485162 @default.
- W3102051688 cites W2952441193 @default.
- W3102051688 cites W2971703624 @default.
- W3102051688 cites W4236155072 @default.
- W3102051688 cites W4255095071 @default.
- W3102051688 cites W429766147 @default.
- W3102051688 cites W831714202 @default.
- W3102051688 doi "https://doi.org/10.1177/0954405420970517" @default.
- W3102051688 hasPublicationYear "2020" @default.
- W3102051688 type Work @default.
- W3102051688 sameAs 3102051688 @default.
- W3102051688 citedByCount "12" @default.
- W3102051688 countsByYear W31020516882021 @default.
- W3102051688 countsByYear W31020516882022 @default.
- W3102051688 countsByYear W31020516882023 @default.
- W3102051688 crossrefType "journal-article" @default.
- W3102051688 hasAuthorship W3102051688A5014289555 @default.
- W3102051688 hasAuthorship W3102051688A5033411611 @default.
- W3102051688 hasConcept C116834253 @default.
- W3102051688 hasConcept C119599485 @default.
- W3102051688 hasConcept C127313418 @default.
- W3102051688 hasConcept C127413603 @default.
- W3102051688 hasConcept C149635348 @default.
- W3102051688 hasConcept C154945302 @default.
- W3102051688 hasConcept C165205528 @default.
- W3102051688 hasConcept C175551986 @default.
- W3102051688 hasConcept C180591934 @default.
- W3102051688 hasConcept C199978012 @default.
- W3102051688 hasConcept C200601418 @default.
- W3102051688 hasConcept C24090081 @default.
- W3102051688 hasConcept C2775846686 @default.
- W3102051688 hasConcept C2776907094 @default.