Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102053067> ?p ?o ?g. }
- W3102053067 abstract "A successful class of image denoising methods is based on Bayesian approaches working in wavelet representations. However, analytical estimates can be obtained only for particular combinations of analytical models of signal and noise, thus precluding its straightforward extension to deal with other arbitrary noise sources. In this paper, we propose an alternative non-explicit way to take into account the relations among natural image wavelet coefficients for denoising: we use support vector regression (SVR) in the wavelet domain to enforce these relations in the estimated signal. Since relations among the coefficients are specific to the signal, the regularization property of SVR is exploited to remove the noise, which does not share this feature. The specific signal relations are encoded in an anisotropic kernel obtained from mutual information measures computed on a representative image database. Training considers minimizing the Kullback-Leibler divergence (KLD) between the estimated and actual probability functions of signal and noise in order to enforce similarity. Due to its non-parametric nature, the method can eventually cope with different noise sources without the need of an explicit re-formulation, as it is strictly necessary under parametric Bayesian formalisms. Results under several noise levels and noise sources show that: (1) the proposed method outperforms conventional wavelet methods that assume coefficient independence, (2) it is similar to state-of-the-art methods that do explicitly include these relations when the noise source is Gaussian, and (3) it gives better numerical and visual performance when more complex, realistic noise sources are considered. Therefore, the proposed machine learning approach can be seen as a more flexible (model-free) alternative to the explicit description of wavelet coefficient relations for image denoising." @default.
- W3102053067 created "2020-11-23" @default.
- W3102053067 creator A5039052506 @default.
- W3102053067 creator A5065281659 @default.
- W3102053067 creator A5065733630 @default.
- W3102053067 creator A5075166585 @default.
- W3102053067 date "2016-01-31" @default.
- W3102053067 modified "2023-09-23" @default.
- W3102053067 title "Image Denoising with Kernels based on Natural Image Relations" @default.
- W3102053067 cites W1512098439 @default.
- W3102053067 cites W1548802052 @default.
- W3102053067 cites W1572899790 @default.
- W3102053067 cites W1775729916 @default.
- W3102053067 cites W1964357740 @default.
- W3102053067 cites W2006262236 @default.
- W3102053067 cites W2008769248 @default.
- W3102053067 cites W2014158063 @default.
- W3102053067 cites W2031879798 @default.
- W3102053067 cites W2041099987 @default.
- W3102053067 cites W2054875385 @default.
- W3102053067 cites W2056370875 @default.
- W3102053067 cites W2077985153 @default.
- W3102053067 cites W2084186221 @default.
- W3102053067 cites W2099111195 @default.
- W3102053067 cites W2101349782 @default.
- W3102053067 cites W2104049184 @default.
- W3102053067 cites W2109812093 @default.
- W3102053067 cites W2114851910 @default.
- W3102053067 cites W2118009585 @default.
- W3102053067 cites W2118217749 @default.
- W3102053067 cites W2121561691 @default.
- W3102053067 cites W2123107849 @default.
- W3102053067 cites W2124731682 @default.
- W3102053067 cites W2127006916 @default.
- W3102053067 cites W2133665775 @default.
- W3102053067 cites W2136571107 @default.
- W3102053067 cites W2139282590 @default.
- W3102053067 cites W2141020375 @default.
- W3102053067 cites W2143421693 @default.
- W3102053067 cites W2144838809 @default.
- W3102053067 cites W2145889472 @default.
- W3102053067 cites W2150060382 @default.
- W3102053067 cites W2151531457 @default.
- W3102053067 cites W2153635508 @default.
- W3102053067 cites W2155319834 @default.
- W3102053067 cites W2156706175 @default.
- W3102053067 cites W2163883637 @default.
- W3102053067 cites W2167034998 @default.
- W3102053067 cites W2606068263 @default.
- W3102053067 cites W2612479531 @default.
- W3102053067 cites W49331655 @default.
- W3102053067 cites W109472744 @default.
- W3102053067 hasPublicationYear "2016" @default.
- W3102053067 type Work @default.
- W3102053067 sameAs 3102053067 @default.
- W3102053067 citedByCount "0" @default.
- W3102053067 crossrefType "posted-content" @default.
- W3102053067 hasAuthorship W3102053067A5039052506 @default.
- W3102053067 hasAuthorship W3102053067A5065281659 @default.
- W3102053067 hasAuthorship W3102053067A5065733630 @default.
- W3102053067 hasAuthorship W3102053067A5075166585 @default.
- W3102053067 hasConcept C11413529 @default.
- W3102053067 hasConcept C115961682 @default.
- W3102053067 hasConcept C153180895 @default.
- W3102053067 hasConcept C154945302 @default.
- W3102053067 hasConcept C163294075 @default.
- W3102053067 hasConcept C33923547 @default.
- W3102053067 hasConcept C41008148 @default.
- W3102053067 hasConcept C47432892 @default.
- W3102053067 hasConcept C99498987 @default.
- W3102053067 hasConceptScore W3102053067C11413529 @default.
- W3102053067 hasConceptScore W3102053067C115961682 @default.
- W3102053067 hasConceptScore W3102053067C153180895 @default.
- W3102053067 hasConceptScore W3102053067C154945302 @default.
- W3102053067 hasConceptScore W3102053067C163294075 @default.
- W3102053067 hasConceptScore W3102053067C33923547 @default.
- W3102053067 hasConceptScore W3102053067C41008148 @default.
- W3102053067 hasConceptScore W3102053067C47432892 @default.
- W3102053067 hasConceptScore W3102053067C99498987 @default.
- W3102053067 hasLocation W31020530671 @default.
- W3102053067 hasOpenAccess W3102053067 @default.
- W3102053067 hasPrimaryLocation W31020530671 @default.
- W3102053067 hasRelatedWork W2029192468 @default.
- W3102053067 hasRelatedWork W2109442543 @default.
- W3102053067 hasRelatedWork W2127075476 @default.
- W3102053067 hasRelatedWork W2182439103 @default.
- W3102053067 hasRelatedWork W2256022806 @default.
- W3102053067 hasRelatedWork W2324396614 @default.
- W3102053067 hasRelatedWork W2340986087 @default.
- W3102053067 hasRelatedWork W2395753199 @default.
- W3102053067 hasRelatedWork W2507795963 @default.
- W3102053067 hasRelatedWork W2605145092 @default.
- W3102053067 hasRelatedWork W2766644198 @default.
- W3102053067 hasRelatedWork W2803580049 @default.
- W3102053067 hasRelatedWork W2949301738 @default.
- W3102053067 hasRelatedWork W2963271405 @default.
- W3102053067 hasRelatedWork W3014683940 @default.
- W3102053067 hasRelatedWork W3022705133 @default.
- W3102053067 hasRelatedWork W3100455090 @default.
- W3102053067 hasRelatedWork W3102025760 @default.