Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102057100> ?p ?o ?g. }
- W3102057100 endingPage "106623" @default.
- W3102057100 startingPage "106623" @default.
- W3102057100 abstract "The generalized effective global optimization (EGO) method based on Kriging model can sequentially solve the expensive black-box problems. However, it can only obtain one sampling point in a cycle, which will result in more time spent on expensive function evaluations and affect the global convergence. To this end, A Kriging-based adaptive global optimization method with generalized expected improvement (KAGO-GEI) is proposed. It divides the enhanced generalized expected improvement (GEI) criterion which recursively changes in the iterative process into double objectives, and then uses multi-objective PSO method to optimize the two objectives to produce the Pareto frontier. Further, more valuable sampling points from Pareto frontier are screened and corrected as the expensive-evaluation points for updating Kriging model. Test results on eighteen benchmark functions and crop evapotranspiration calculation example show that the proposed method is superior to other classical optimization methods in terms of convergence and accuracy in most cases." @default.
- W3102057100 created "2020-11-23" @default.
- W3102057100 creator A5003136864 @default.
- W3102057100 creator A5011870783 @default.
- W3102057100 creator A5013734582 @default.
- W3102057100 creator A5036850358 @default.
- W3102057100 creator A5043143915 @default.
- W3102057100 date "2021-02-01" @default.
- W3102057100 modified "2023-09-29" @default.
- W3102057100 title "A kriging-based adaptive global optimization method with generalized expected improvement and its application in numerical simulation and crop evapotranspiration" @default.
- W3102057100 cites W1510052597 @default.
- W3102057100 cites W1539732147 @default.
- W3102057100 cites W1786052414 @default.
- W3102057100 cites W1975075722 @default.
- W3102057100 cites W2040696545 @default.
- W3102057100 cites W2047445539 @default.
- W3102057100 cites W2054352980 @default.
- W3102057100 cites W2106622844 @default.
- W3102057100 cites W2111101653 @default.
- W3102057100 cites W2151635674 @default.
- W3102057100 cites W2153591710 @default.
- W3102057100 cites W2156677085 @default.
- W3102057100 cites W2476952809 @default.
- W3102057100 cites W2556498009 @default.
- W3102057100 cites W2582017947 @default.
- W3102057100 cites W2691329128 @default.
- W3102057100 cites W2766133347 @default.
- W3102057100 cites W2789800763 @default.
- W3102057100 cites W2792109350 @default.
- W3102057100 cites W2802316801 @default.
- W3102057100 cites W2803739314 @default.
- W3102057100 cites W2808305484 @default.
- W3102057100 cites W2883593426 @default.
- W3102057100 cites W2892026338 @default.
- W3102057100 cites W2910317892 @default.
- W3102057100 cites W2914078979 @default.
- W3102057100 cites W2946654476 @default.
- W3102057100 cites W2964829589 @default.
- W3102057100 cites W2982863740 @default.
- W3102057100 cites W2998612834 @default.
- W3102057100 cites W3001450165 @default.
- W3102057100 cites W3006494982 @default.
- W3102057100 cites W3007019708 @default.
- W3102057100 cites W4251929443 @default.
- W3102057100 doi "https://doi.org/10.1016/j.agwat.2020.106623" @default.
- W3102057100 hasPublicationYear "2021" @default.
- W3102057100 type Work @default.
- W3102057100 sameAs 3102057100 @default.
- W3102057100 citedByCount "10" @default.
- W3102057100 countsByYear W31020571002021 @default.
- W3102057100 countsByYear W31020571002022 @default.
- W3102057100 countsByYear W31020571002023 @default.
- W3102057100 crossrefType "journal-article" @default.
- W3102057100 hasAuthorship W3102057100A5003136864 @default.
- W3102057100 hasAuthorship W3102057100A5011870783 @default.
- W3102057100 hasAuthorship W3102057100A5013734582 @default.
- W3102057100 hasAuthorship W3102057100A5036850358 @default.
- W3102057100 hasAuthorship W3102057100A5043143915 @default.
- W3102057100 hasConcept C105795698 @default.
- W3102057100 hasConcept C106131492 @default.
- W3102057100 hasConcept C126255220 @default.
- W3102057100 hasConcept C13280743 @default.
- W3102057100 hasConcept C137635306 @default.
- W3102057100 hasConcept C137836250 @default.
- W3102057100 hasConcept C140779682 @default.
- W3102057100 hasConcept C154945302 @default.
- W3102057100 hasConcept C162324750 @default.
- W3102057100 hasConcept C164752517 @default.
- W3102057100 hasConcept C176783924 @default.
- W3102057100 hasConcept C185798385 @default.
- W3102057100 hasConcept C18903297 @default.
- W3102057100 hasConcept C205649164 @default.
- W3102057100 hasConcept C2777303404 @default.
- W3102057100 hasConcept C31972630 @default.
- W3102057100 hasConcept C33923547 @default.
- W3102057100 hasConcept C41008148 @default.
- W3102057100 hasConcept C50522688 @default.
- W3102057100 hasConcept C68781425 @default.
- W3102057100 hasConcept C81692654 @default.
- W3102057100 hasConcept C86803240 @default.
- W3102057100 hasConcept C94966114 @default.
- W3102057100 hasConceptScore W3102057100C105795698 @default.
- W3102057100 hasConceptScore W3102057100C106131492 @default.
- W3102057100 hasConceptScore W3102057100C126255220 @default.
- W3102057100 hasConceptScore W3102057100C13280743 @default.
- W3102057100 hasConceptScore W3102057100C137635306 @default.
- W3102057100 hasConceptScore W3102057100C137836250 @default.
- W3102057100 hasConceptScore W3102057100C140779682 @default.
- W3102057100 hasConceptScore W3102057100C154945302 @default.
- W3102057100 hasConceptScore W3102057100C162324750 @default.
- W3102057100 hasConceptScore W3102057100C164752517 @default.
- W3102057100 hasConceptScore W3102057100C176783924 @default.
- W3102057100 hasConceptScore W3102057100C185798385 @default.
- W3102057100 hasConceptScore W3102057100C18903297 @default.
- W3102057100 hasConceptScore W3102057100C205649164 @default.
- W3102057100 hasConceptScore W3102057100C2777303404 @default.
- W3102057100 hasConceptScore W3102057100C31972630 @default.
- W3102057100 hasConceptScore W3102057100C33923547 @default.