Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102145247> ?p ?o ?g. }
- W3102145247 endingPage "652" @default.
- W3102145247 startingPage "601" @default.
- W3102145247 abstract "We obtain a exponential large deviation upper bound for continuous observables on suspension semiflows over a non-uniformly expanding base transformation with non-flat singularities and/or discontinuities, where the roof function defining the suspension behaves like the logarithm of the distance to the singular/discontinuous set of the base map. To obtain this upper bound, we show that the base transformation exhibits exponential slow recurrence to the singular set. The results are applied to semiflows modeling singular-hyperbolic attracting sets of $C^2$ vector fields. As corollary of the methods we obtain result on the existence of physical measure for classes of piecewise $C^{1+}$ expanding maps of the interval with singularities and discontinuities. We are also able to obtain exponentially fast escape rates from subsets without full measure." @default.
- W3102145247 created "2020-11-23" @default.
- W3102145247 creator A5039951335 @default.
- W3102145247 creator A5051762441 @default.
- W3102145247 creator A5089922660 @default.
- W3102145247 date "2018-12-22" @default.
- W3102145247 modified "2023-10-14" @default.
- W3102145247 title "Upper Large Deviations Bound for Singular-Hyperbolic Attracting Sets" @default.
- W3102145247 cites W1480808529 @default.
- W3102145247 cites W1498335665 @default.
- W3102145247 cites W1550918041 @default.
- W3102145247 cites W1589522393 @default.
- W3102145247 cites W1630543237 @default.
- W3102145247 cites W1672462702 @default.
- W3102145247 cites W1957998814 @default.
- W3102145247 cites W1967288456 @default.
- W3102145247 cites W1967756571 @default.
- W3102145247 cites W1973889959 @default.
- W3102145247 cites W1976749640 @default.
- W3102145247 cites W1983031115 @default.
- W3102145247 cites W1984029601 @default.
- W3102145247 cites W1992648748 @default.
- W3102145247 cites W2005024437 @default.
- W3102145247 cites W2011814687 @default.
- W3102145247 cites W2019398782 @default.
- W3102145247 cites W2023771044 @default.
- W3102145247 cites W2024250320 @default.
- W3102145247 cites W2029216970 @default.
- W3102145247 cites W2042148150 @default.
- W3102145247 cites W2043298274 @default.
- W3102145247 cites W2050976220 @default.
- W3102145247 cites W2056433797 @default.
- W3102145247 cites W2058099048 @default.
- W3102145247 cites W2064124043 @default.
- W3102145247 cites W2064997646 @default.
- W3102145247 cites W2065467441 @default.
- W3102145247 cites W2068213827 @default.
- W3102145247 cites W2089555406 @default.
- W3102145247 cites W2090302868 @default.
- W3102145247 cites W2095039299 @default.
- W3102145247 cites W2121864692 @default.
- W3102145247 cites W2128378237 @default.
- W3102145247 cites W2136055897 @default.
- W3102145247 cites W2145273827 @default.
- W3102145247 cites W2147701284 @default.
- W3102145247 cites W2162696617 @default.
- W3102145247 cites W2323139285 @default.
- W3102145247 cites W2333211228 @default.
- W3102145247 cites W2335484446 @default.
- W3102145247 cites W2413951506 @default.
- W3102145247 cites W2962760636 @default.
- W3102145247 cites W3099128225 @default.
- W3102145247 cites W3100750568 @default.
- W3102145247 cites W3101388899 @default.
- W3102145247 cites W3101429996 @default.
- W3102145247 cites W3102525646 @default.
- W3102145247 cites W3105343112 @default.
- W3102145247 cites W3105432095 @default.
- W3102145247 cites W3106025261 @default.
- W3102145247 cites W3162514650 @default.
- W3102145247 cites W4210605524 @default.
- W3102145247 cites W4212958445 @default.
- W3102145247 cites W4232709242 @default.
- W3102145247 cites W4238113606 @default.
- W3102145247 cites W4243104088 @default.
- W3102145247 cites W4249655589 @default.
- W3102145247 cites W4255454912 @default.
- W3102145247 cites W4301513864 @default.
- W3102145247 cites W608244664 @default.
- W3102145247 doi "https://doi.org/10.1007/s10884-018-9723-6" @default.
- W3102145247 hasPublicationYear "2018" @default.
- W3102145247 type Work @default.
- W3102145247 sameAs 3102145247 @default.
- W3102145247 citedByCount "11" @default.
- W3102145247 countsByYear W31021452472017 @default.
- W3102145247 countsByYear W31021452472019 @default.
- W3102145247 countsByYear W31021452472020 @default.
- W3102145247 countsByYear W31021452472021 @default.
- W3102145247 countsByYear W31021452472023 @default.
- W3102145247 crossrefType "journal-article" @default.
- W3102145247 hasAuthorship W3102145247A5039951335 @default.
- W3102145247 hasAuthorship W3102145247A5051762441 @default.
- W3102145247 hasAuthorship W3102145247A5089922660 @default.
- W3102145247 hasBestOaLocation W31021452472 @default.
- W3102145247 hasConcept C104317684 @default.
- W3102145247 hasConcept C12843 @default.
- W3102145247 hasConcept C134306372 @default.
- W3102145247 hasConcept C15627037 @default.
- W3102145247 hasConcept C164660894 @default.
- W3102145247 hasConcept C185592680 @default.
- W3102145247 hasConcept C202444582 @default.
- W3102145247 hasConcept C204241405 @default.
- W3102145247 hasConcept C2780009758 @default.
- W3102145247 hasConcept C2780012671 @default.
- W3102145247 hasConcept C33923547 @default.
- W3102145247 hasConcept C39927690 @default.
- W3102145247 hasConcept C41008148 @default.
- W3102145247 hasConcept C42058472 @default.