Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102173676> ?p ?o ?g. }
- W3102173676 endingPage "3751" @default.
- W3102173676 startingPage "3751" @default.
- W3102173676 abstract "Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are applied to extract six features, which are combined to monitor sea ice using the decision tree (DT) and random forest (RF) algorithms. Firstly, the feature sequences are used as input variables and sea ice concentration (SIC) data from the Advanced Microwave Space Radiometer-2 (AMSR-2) are applied as targeted output to train the sea ice monitoring model. Hereafter, the performance of the proposed method is evaluated through comparing with the sea ice edge (SIE) data from the Special Sensor Microwave Imager Sounder (SSMIS) data. The DT- and RF-based methods achieve an overall accuracy of 97.51% and 98.03%, respectively, in the Arctic region and 95.46% and 95.96%, respectively, in the Antarctic region. The DT- and RF-based methods achieve similar accuracies, while the Kappa coefficient of RF-based approach is slightly larger than that of the DT-based approach, which indicates that the RF-based method outperforms the DT-based method. The results show the potential of monitoring sea ice using machine learning-aided GNSS-R approaches." @default.
- W3102173676 created "2020-11-23" @default.
- W3102173676 creator A5027189869 @default.
- W3102173676 creator A5035533740 @default.
- W3102173676 creator A5040896620 @default.
- W3102173676 creator A5043560643 @default.
- W3102173676 creator A5049435517 @default.
- W3102173676 creator A5080131701 @default.
- W3102173676 creator A5091063574 @default.
- W3102173676 date "2020-11-14" @default.
- W3102173676 modified "2023-10-02" @default.
- W3102173676 title "Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data" @default.
- W3102173676 cites W1923563908 @default.
- W3102173676 cites W1964610703 @default.
- W3102173676 cites W1970590897 @default.
- W3102173676 cites W1976193075 @default.
- W3102173676 cites W1978642993 @default.
- W3102173676 cites W1978729030 @default.
- W3102173676 cites W1995678151 @default.
- W3102173676 cites W2008357767 @default.
- W3102173676 cites W2032378334 @default.
- W3102173676 cites W2042637819 @default.
- W3102173676 cites W2069556331 @default.
- W3102173676 cites W2073486640 @default.
- W3102173676 cites W2076576187 @default.
- W3102173676 cites W2087725274 @default.
- W3102173676 cites W2107580583 @default.
- W3102173676 cites W2145862305 @default.
- W3102173676 cites W2155069722 @default.
- W3102173676 cites W2166608488 @default.
- W3102173676 cites W2218047931 @default.
- W3102173676 cites W2261059368 @default.
- W3102173676 cites W2289921429 @default.
- W3102173676 cites W2344515391 @default.
- W3102173676 cites W2412588858 @default.
- W3102173676 cites W2486430858 @default.
- W3102173676 cites W2524127322 @default.
- W3102173676 cites W2534802175 @default.
- W3102173676 cites W2603711747 @default.
- W3102173676 cites W2606512637 @default.
- W3102173676 cites W2606874166 @default.
- W3102173676 cites W2625413745 @default.
- W3102173676 cites W2727823617 @default.
- W3102173676 cites W2735764008 @default.
- W3102173676 cites W2738302783 @default.
- W3102173676 cites W2745135761 @default.
- W3102173676 cites W2790797570 @default.
- W3102173676 cites W2791295146 @default.
- W3102173676 cites W2793927960 @default.
- W3102173676 cites W2807220393 @default.
- W3102173676 cites W2883945992 @default.
- W3102173676 cites W2947225220 @default.
- W3102173676 cites W2947975936 @default.
- W3102173676 cites W2950764416 @default.
- W3102173676 cites W2955208048 @default.
- W3102173676 cites W2955384860 @default.
- W3102173676 cites W2964431324 @default.
- W3102173676 cites W2968955748 @default.
- W3102173676 cites W2971357732 @default.
- W3102173676 cites W2979853793 @default.
- W3102173676 cites W2981668998 @default.
- W3102173676 cites W2995265070 @default.
- W3102173676 cites W2996474469 @default.
- W3102173676 cites W3001315270 @default.
- W3102173676 cites W3005356453 @default.
- W3102173676 cites W3015478930 @default.
- W3102173676 cites W4294214983 @default.
- W3102173676 doi "https://doi.org/10.3390/rs12223751" @default.
- W3102173676 hasPublicationYear "2020" @default.
- W3102173676 type Work @default.
- W3102173676 sameAs 3102173676 @default.
- W3102173676 citedByCount "8" @default.
- W3102173676 countsByYear W31021736762021 @default.
- W3102173676 countsByYear W31021736762022 @default.
- W3102173676 countsByYear W31021736762023 @default.
- W3102173676 crossrefType "journal-article" @default.
- W3102173676 hasAuthorship W3102173676A5027189869 @default.
- W3102173676 hasAuthorship W3102173676A5035533740 @default.
- W3102173676 hasAuthorship W3102173676A5040896620 @default.
- W3102173676 hasAuthorship W3102173676A5043560643 @default.
- W3102173676 hasAuthorship W3102173676A5049435517 @default.
- W3102173676 hasAuthorship W3102173676A5080131701 @default.
- W3102173676 hasAuthorship W3102173676A5091063574 @default.
- W3102173676 hasBestOaLocation W31021736761 @default.
- W3102173676 hasConcept C103824480 @default.
- W3102173676 hasConcept C120189094 @default.
- W3102173676 hasConcept C127313418 @default.
- W3102173676 hasConcept C136894858 @default.
- W3102173676 hasConcept C14279187 @default.
- W3102173676 hasConcept C149767477 @default.
- W3102173676 hasConcept C161798024 @default.
- W3102173676 hasConcept C194520297 @default.
- W3102173676 hasConcept C2776422048 @default.
- W3102173676 hasConcept C2778925768 @default.
- W3102173676 hasConcept C31972630 @default.
- W3102173676 hasConcept C39432304 @default.
- W3102173676 hasConcept C41008148 @default.
- W3102173676 hasConcept C44838205 @default.