Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102179962> ?p ?o ?g. }
- W3102179962 endingPage "105001" @default.
- W3102179962 startingPage "105001" @default.
- W3102179962 abstract "Abstract We propose a Bayesian inference framework to estimate uncertainties in inverse scattering problems. Given the observed data, the forward model and their uncertainties, we find the posterior distribution over a finite parameter field representing the objects. To construct the prior distribution we use a topological sensitivity analysis. We demonstrate the approach on the Bayesian solution of 2D inverse problems in light and acoustic holography with synthetic data. Statistical information on objects such as their center location, diameter size, orientation, as well as material properties, are extracted by sampling the posterior distribution. Assuming the number of objects known, comparison of the results obtained by Markov Chain Monte Carlo (MCMC) sampling and by sampling a Gaussian distribution found by linearization about the maximum a posteriori estimate show reasonable agreement. The latter procedure has low computational cost, which makes it an interesting tool for uncertainty studies in 3D. However, MCMC sampling provides a more complete picture of the posterior distribution and yields multi-modal posterior distributions for problems with larger measurement noise. When the number of objects is unknown, we devise a stochastic model selection framework." @default.
- W3102179962 created "2020-11-23" @default.
- W3102179962 creator A5012373865 @default.
- W3102179962 creator A5058352766 @default.
- W3102179962 creator A5075478760 @default.
- W3102179962 date "2020-09-24" @default.
- W3102179962 modified "2023-10-01" @default.
- W3102179962 title "Bayesian approach to inverse scattering with topological priors" @default.
- W3102179962 cites W1503613404 @default.
- W3102179962 cites W1603353793 @default.
- W3102179962 cites W1972054485 @default.
- W3102179962 cites W1976394157 @default.
- W3102179962 cites W1986293636 @default.
- W3102179962 cites W1989147384 @default.
- W3102179962 cites W1992003304 @default.
- W3102179962 cites W1992920843 @default.
- W3102179962 cites W1995067704 @default.
- W3102179962 cites W2005305931 @default.
- W3102179962 cites W2013565263 @default.
- W3102179962 cites W2027068534 @default.
- W3102179962 cites W2054782886 @default.
- W3102179962 cites W2061237976 @default.
- W3102179962 cites W2064522883 @default.
- W3102179962 cites W2067678611 @default.
- W3102179962 cites W2082491848 @default.
- W3102179962 cites W2087400951 @default.
- W3102179962 cites W2088440114 @default.
- W3102179962 cites W2095361687 @default.
- W3102179962 cites W2101687185 @default.
- W3102179962 cites W2102263267 @default.
- W3102179962 cites W2104232537 @default.
- W3102179962 cites W2126712148 @default.
- W3102179962 cites W2144634920 @default.
- W3102179962 cites W2148534890 @default.
- W3102179962 cites W2149270732 @default.
- W3102179962 cites W2152657433 @default.
- W3102179962 cites W2157700312 @default.
- W3102179962 cites W2236884385 @default.
- W3102179962 cites W2236957706 @default.
- W3102179962 cites W2397321582 @default.
- W3102179962 cites W2461014741 @default.
- W3102179962 cites W2494019436 @default.
- W3102179962 cites W2527800686 @default.
- W3102179962 cites W2528244949 @default.
- W3102179962 cites W2900263237 @default.
- W3102179962 cites W2924846246 @default.
- W3102179962 cites W2962707560 @default.
- W3102179962 cites W2962841346 @default.
- W3102179962 cites W2963643827 @default.
- W3102179962 cites W3098795248 @default.
- W3102179962 cites W3102014803 @default.
- W3102179962 cites W3103820054 @default.
- W3102179962 doi "https://doi.org/10.1088/1361-6420/abaa30" @default.
- W3102179962 hasPublicationYear "2020" @default.
- W3102179962 type Work @default.
- W3102179962 sameAs 3102179962 @default.
- W3102179962 citedByCount "7" @default.
- W3102179962 countsByYear W31021799622020 @default.
- W3102179962 countsByYear W31021799622021 @default.
- W3102179962 countsByYear W31021799622022 @default.
- W3102179962 countsByYear W31021799622023 @default.
- W3102179962 crossrefType "journal-article" @default.
- W3102179962 hasAuthorship W3102179962A5012373865 @default.
- W3102179962 hasAuthorship W3102179962A5058352766 @default.
- W3102179962 hasAuthorship W3102179962A5075478760 @default.
- W3102179962 hasBestOaLocation W31021799622 @default.
- W3102179962 hasConcept C105795698 @default.
- W3102179962 hasConcept C106131492 @default.
- W3102179962 hasConcept C107673813 @default.
- W3102179962 hasConcept C111350023 @default.
- W3102179962 hasConcept C11413529 @default.
- W3102179962 hasConcept C126255220 @default.
- W3102179962 hasConcept C134306372 @default.
- W3102179962 hasConcept C135252773 @default.
- W3102179962 hasConcept C140779682 @default.
- W3102179962 hasConcept C154945302 @default.
- W3102179962 hasConcept C158424031 @default.
- W3102179962 hasConcept C160234255 @default.
- W3102179962 hasConcept C177769412 @default.
- W3102179962 hasConcept C204693719 @default.
- W3102179962 hasConcept C28826006 @default.
- W3102179962 hasConcept C31972630 @default.
- W3102179962 hasConcept C33923547 @default.
- W3102179962 hasConcept C41008148 @default.
- W3102179962 hasConcept C49781872 @default.
- W3102179962 hasConcept C57830394 @default.
- W3102179962 hasConcept C9810830 @default.
- W3102179962 hasConceptScore W3102179962C105795698 @default.
- W3102179962 hasConceptScore W3102179962C106131492 @default.
- W3102179962 hasConceptScore W3102179962C107673813 @default.
- W3102179962 hasConceptScore W3102179962C111350023 @default.
- W3102179962 hasConceptScore W3102179962C11413529 @default.
- W3102179962 hasConceptScore W3102179962C126255220 @default.
- W3102179962 hasConceptScore W3102179962C134306372 @default.
- W3102179962 hasConceptScore W3102179962C135252773 @default.
- W3102179962 hasConceptScore W3102179962C140779682 @default.
- W3102179962 hasConceptScore W3102179962C154945302 @default.
- W3102179962 hasConceptScore W3102179962C158424031 @default.