Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102194620> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3102194620 endingPage "1868" @default.
- W3102194620 startingPage "1853" @default.
- W3102194620 abstract "Ginzburg-Landau fields are the solutions of the Ginzburg-Landau equations which depend on two positive parameters, $alpha$ and $beta$. We give conditions on $alpha$ and $beta$ for the existence of irreducible solutions of these equations. Our results hold for arbitrary compact, oriented, Riemannian 2-manifolds (for example, bounded domains in $mathbb{R}^2$, spheres, tori, etc.) with de Gennes-Neumann boundary conditions. We also prove that, for each such manifold and all positive $alpha$ and $beta$, the Ginzburg-Landau free energy is a Palais-Smale function on the space of gauge equivalence classes, Ginzburg-Landau fields exist for only a finite set of energy values, and the moduli space of Ginzburg-Landau fields is compact." @default.
- W3102194620 created "2020-11-23" @default.
- W3102194620 creator A5042534615 @default.
- W3102194620 date "2017-07-10" @default.
- W3102194620 modified "2023-09-23" @default.
- W3102194620 title "Irreducible Ginzburg–Landau Fields in Dimension 2" @default.
- W3102194620 cites W1977750299 @default.
- W3102194620 cites W2002440519 @default.
- W3102194620 cites W2008190630 @default.
- W3102194620 cites W2028897705 @default.
- W3102194620 cites W2167675215 @default.
- W3102194620 cites W3104474372 @default.
- W3102194620 cites W4233965720 @default.
- W3102194620 doi "https://doi.org/10.1007/s12220-017-9890-4" @default.
- W3102194620 hasPublicationYear "2017" @default.
- W3102194620 type Work @default.
- W3102194620 sameAs 3102194620 @default.
- W3102194620 citedByCount "3" @default.
- W3102194620 countsByYear W31021946202019 @default.
- W3102194620 countsByYear W31021946202021 @default.
- W3102194620 countsByYear W31021946202023 @default.
- W3102194620 crossrefType "journal-article" @default.
- W3102194620 hasAuthorship W3102194620A5042534615 @default.
- W3102194620 hasBestOaLocation W31021946202 @default.
- W3102194620 hasConcept C134306372 @default.
- W3102194620 hasConcept C202444582 @default.
- W3102194620 hasConcept C2524010 @default.
- W3102194620 hasConcept C33923547 @default.
- W3102194620 hasConcept C34388435 @default.
- W3102194620 hasConcept C37914503 @default.
- W3102194620 hasConcept C6270764 @default.
- W3102194620 hasConcept C73373263 @default.
- W3102194620 hasConcept C9767117 @default.
- W3102194620 hasConceptScore W3102194620C134306372 @default.
- W3102194620 hasConceptScore W3102194620C202444582 @default.
- W3102194620 hasConceptScore W3102194620C2524010 @default.
- W3102194620 hasConceptScore W3102194620C33923547 @default.
- W3102194620 hasConceptScore W3102194620C34388435 @default.
- W3102194620 hasConceptScore W3102194620C37914503 @default.
- W3102194620 hasConceptScore W3102194620C6270764 @default.
- W3102194620 hasConceptScore W3102194620C73373263 @default.
- W3102194620 hasConceptScore W3102194620C9767117 @default.
- W3102194620 hasIssue "2" @default.
- W3102194620 hasLocation W31021946201 @default.
- W3102194620 hasLocation W31021946202 @default.
- W3102194620 hasLocation W31021946203 @default.
- W3102194620 hasOpenAccess W3102194620 @default.
- W3102194620 hasPrimaryLocation W31021946201 @default.
- W3102194620 hasRelatedWork W1927071250 @default.
- W3102194620 hasRelatedWork W2073994398 @default.
- W3102194620 hasRelatedWork W2079328819 @default.
- W3102194620 hasRelatedWork W2085985792 @default.
- W3102194620 hasRelatedWork W2117918982 @default.
- W3102194620 hasRelatedWork W2900918889 @default.
- W3102194620 hasRelatedWork W2963341196 @default.
- W3102194620 hasRelatedWork W2964202745 @default.
- W3102194620 hasRelatedWork W4289478360 @default.
- W3102194620 hasRelatedWork W4377938691 @default.
- W3102194620 hasVolume "28" @default.
- W3102194620 isParatext "false" @default.
- W3102194620 isRetracted "false" @default.
- W3102194620 magId "3102194620" @default.
- W3102194620 workType "article" @default.