Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102238863> ?p ?o ?g. }
- W3102238863 abstract "Drug discovery for diseases such as Parkinson’s disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson’s disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes. We use fixed weights from a convolutional deep neural network trained on ImageNet to generate deep embeddings from each image and train machine learning models to detect morphological disease phenotypes. Our platform’s robustness and sensitivity allow the detection of individual-specific variation with high fidelity across batches and plate layouts. Lastly, our models confidently separate LRRK2 and sporadic Parkinson’s disease lines from healthy controls (receiver operating characteristic area under curve 0.79 (0.08 standard deviation)), supporting the capacity of this platform for complex disease modeling and drug screening applications." @default.
- W3102238863 created "2020-11-23" @default.
- W3102238863 creator A5002452282 @default.
- W3102238863 creator A5004939741 @default.
- W3102238863 creator A5007982042 @default.
- W3102238863 creator A5009269175 @default.
- W3102238863 creator A5012441381 @default.
- W3102238863 creator A5013693150 @default.
- W3102238863 creator A5013852211 @default.
- W3102238863 creator A5016685068 @default.
- W3102238863 creator A5017167820 @default.
- W3102238863 creator A5021119207 @default.
- W3102238863 creator A5023005051 @default.
- W3102238863 creator A5023987670 @default.
- W3102238863 creator A5025689655 @default.
- W3102238863 creator A5027069769 @default.
- W3102238863 creator A5028555296 @default.
- W3102238863 creator A5029963075 @default.
- W3102238863 creator A5034982463 @default.
- W3102238863 creator A5037927490 @default.
- W3102238863 creator A5038181600 @default.
- W3102238863 creator A5038423072 @default.
- W3102238863 creator A5045812453 @default.
- W3102238863 creator A5048580797 @default.
- W3102238863 creator A5049916061 @default.
- W3102238863 creator A5050107108 @default.
- W3102238863 creator A5051769264 @default.
- W3102238863 creator A5052481553 @default.
- W3102238863 creator A5058611227 @default.
- W3102238863 creator A5060274737 @default.
- W3102238863 creator A5061493455 @default.
- W3102238863 creator A5063136665 @default.
- W3102238863 creator A5065015663 @default.
- W3102238863 creator A5065062323 @default.
- W3102238863 creator A5065263704 @default.
- W3102238863 creator A5068229829 @default.
- W3102238863 creator A5074058946 @default.
- W3102238863 creator A5076391515 @default.
- W3102238863 creator A5078538181 @default.
- W3102238863 creator A5083814676 @default.
- W3102238863 date "2020-11-16" @default.
- W3102238863 modified "2023-09-26" @default.
- W3102238863 title "Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts" @default.
- W3102238863 cites W1671213273 @default.
- W3102238863 cites W1973926398 @default.
- W3102238863 cites W2107554012 @default.
- W3102238863 cites W2117539524 @default.
- W3102238863 cites W2134829539 @default.
- W3102238863 cites W2143906078 @default.
- W3102238863 cites W2154737306 @default.
- W3102238863 cites W2165109658 @default.
- W3102238863 cites W2167279371 @default.
- W3102238863 cites W2168784140 @default.
- W3102238863 cites W2183341477 @default.
- W3102238863 cites W2281923782 @default.
- W3102238863 cites W2509141893 @default.
- W3102238863 cites W2565756807 @default.
- W3102238863 cites W2615261953 @default.
- W3102238863 cites W2728842897 @default.
- W3102238863 cites W2795106634 @default.
- W3102238863 cites W2811106513 @default.
- W3102238863 cites W2891411797 @default.
- W3102238863 cites W2894229433 @default.
- W3102238863 cites W2959350436 @default.
- W3102238863 cites W2975042496 @default.
- W3102238863 cites W2989808997 @default.
- W3102238863 cites W3000974767 @default.
- W3102238863 cites W3003022248 @default.
- W3102238863 cites W3007309629 @default.
- W3102238863 cites W3019802146 @default.
- W3102238863 cites W3042654062 @default.
- W3102238863 cites W3081901609 @default.
- W3102238863 cites W3089107717 @default.
- W3102238863 cites W3127773563 @default.
- W3102238863 cites W4243523910 @default.
- W3102238863 doi "https://doi.org/10.1101/2020.11.13.380576" @default.
- W3102238863 hasPublicationYear "2020" @default.
- W3102238863 type Work @default.
- W3102238863 sameAs 3102238863 @default.
- W3102238863 citedByCount "5" @default.
- W3102238863 countsByYear W31022388632021 @default.
- W3102238863 countsByYear W31022388632022 @default.
- W3102238863 crossrefType "posted-content" @default.
- W3102238863 hasAuthorship W3102238863A5002452282 @default.
- W3102238863 hasAuthorship W3102238863A5004939741 @default.
- W3102238863 hasAuthorship W3102238863A5007982042 @default.
- W3102238863 hasAuthorship W3102238863A5009269175 @default.
- W3102238863 hasAuthorship W3102238863A5012441381 @default.
- W3102238863 hasAuthorship W3102238863A5013693150 @default.
- W3102238863 hasAuthorship W3102238863A5013852211 @default.
- W3102238863 hasAuthorship W3102238863A5016685068 @default.
- W3102238863 hasAuthorship W3102238863A5017167820 @default.
- W3102238863 hasAuthorship W3102238863A5021119207 @default.
- W3102238863 hasAuthorship W3102238863A5023005051 @default.
- W3102238863 hasAuthorship W3102238863A5023987670 @default.
- W3102238863 hasAuthorship W3102238863A5025689655 @default.
- W3102238863 hasAuthorship W3102238863A5027069769 @default.
- W3102238863 hasAuthorship W3102238863A5028555296 @default.
- W3102238863 hasAuthorship W3102238863A5029963075 @default.
- W3102238863 hasAuthorship W3102238863A5034982463 @default.