Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102254678> ?p ?o ?g. }
- W3102254678 endingPage "493" @default.
- W3102254678 startingPage "493" @default.
- W3102254678 abstract "Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where the whole body of the patient is scanned. However, hot spots that are presented in the scanned image can be misleading, making the accurate and reliable diagnosis of bone metastasis a challenge. Artificial intelligence can play a crucial role as a decision support tool to alleviate the burden of generating manual annotations on images and therefore prevent oversights by medical experts. So far, several state-of-the-art convolutional neural networks (CNN) have been employed to address bone metastasis diagnosis as a binary or multiclass classification problem achieving adequate accuracy (higher than 90%). However, due to their increased complexity (number of layers and free parameters), these networks are severely dependent on the number of available training images that are typically limited within the medical domain. Our study was dedicated to the use of a new deep learning architecture that overcomes the computational burden by using a convolutional neural network with a significantly lower number of floating-point operations (FLOPs) and free parameters. The proposed lightweight look-behind fully convolutional neural network was implemented and compared with several well-known powerful CNNs, such as ResNet50, VGG16, Inception V3, Xception, and MobileNet on an imaging dataset of moderate size (778 images from male subjects with prostate cancer). The results prove the superiority of the proposed methodology over the current state-of-the-art on identifying bone metastasis. The proposed methodology demonstrates a unique potential to revolutionize image-based diagnostics enabling new possibilities for enhanced cancer metastasis monitoring and treatment." @default.
- W3102254678 created "2020-11-23" @default.
- W3102254678 creator A5012632769 @default.
- W3102254678 creator A5032958433 @default.
- W3102254678 creator A5037965915 @default.
- W3102254678 creator A5077526481 @default.
- W3102254678 creator A5089706575 @default.
- W3102254678 date "2020-11-18" @default.
- W3102254678 modified "2023-09-26" @default.
- W3102254678 title "A Lightweight Convolutional Neural Network Architecture Applied for Bone Metastasis Classification in Nuclear Medicine: A Case Study on Prostate Cancer Patients" @default.
- W3102254678 cites W1596597141 @default.
- W3102254678 cites W1984388855 @default.
- W3102254678 cites W1997126111 @default.
- W3102254678 cites W2006108085 @default.
- W3102254678 cites W2160386773 @default.
- W3102254678 cites W2161962336 @default.
- W3102254678 cites W2254289098 @default.
- W3102254678 cites W2501158386 @default.
- W3102254678 cites W2888728157 @default.
- W3102254678 cites W2898094765 @default.
- W3102254678 cites W2904144652 @default.
- W3102254678 cites W2908804667 @default.
- W3102254678 cites W2971445890 @default.
- W3102254678 cites W3005061589 @default.
- W3102254678 cites W3019898597 @default.
- W3102254678 cites W3028751448 @default.
- W3102254678 cites W3043289003 @default.
- W3102254678 cites W3044459675 @default.
- W3102254678 cites W3046103539 @default.
- W3102254678 cites W3049521066 @default.
- W3102254678 cites W3080479355 @default.
- W3102254678 cites W3092312060 @default.
- W3102254678 cites W4249216321 @default.
- W3102254678 doi "https://doi.org/10.3390/healthcare8040493" @default.
- W3102254678 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7711827" @default.
- W3102254678 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33217973" @default.
- W3102254678 hasPublicationYear "2020" @default.
- W3102254678 type Work @default.
- W3102254678 sameAs 3102254678 @default.
- W3102254678 citedByCount "16" @default.
- W3102254678 countsByYear W31022546782021 @default.
- W3102254678 countsByYear W31022546782022 @default.
- W3102254678 countsByYear W31022546782023 @default.
- W3102254678 crossrefType "journal-article" @default.
- W3102254678 hasAuthorship W3102254678A5012632769 @default.
- W3102254678 hasAuthorship W3102254678A5032958433 @default.
- W3102254678 hasAuthorship W3102254678A5037965915 @default.
- W3102254678 hasAuthorship W3102254678A5077526481 @default.
- W3102254678 hasAuthorship W3102254678A5089706575 @default.
- W3102254678 hasBestOaLocation W31022546781 @default.
- W3102254678 hasConcept C108583219 @default.
- W3102254678 hasConcept C119857082 @default.
- W3102254678 hasConcept C121608353 @default.
- W3102254678 hasConcept C126322002 @default.
- W3102254678 hasConcept C126838900 @default.
- W3102254678 hasConcept C153180895 @default.
- W3102254678 hasConcept C154945302 @default.
- W3102254678 hasConcept C2776049877 @default.
- W3102254678 hasConcept C2777783956 @default.
- W3102254678 hasConcept C2780192828 @default.
- W3102254678 hasConcept C31601959 @default.
- W3102254678 hasConcept C41008148 @default.
- W3102254678 hasConcept C50644808 @default.
- W3102254678 hasConcept C71924100 @default.
- W3102254678 hasConcept C81363708 @default.
- W3102254678 hasConceptScore W3102254678C108583219 @default.
- W3102254678 hasConceptScore W3102254678C119857082 @default.
- W3102254678 hasConceptScore W3102254678C121608353 @default.
- W3102254678 hasConceptScore W3102254678C126322002 @default.
- W3102254678 hasConceptScore W3102254678C126838900 @default.
- W3102254678 hasConceptScore W3102254678C153180895 @default.
- W3102254678 hasConceptScore W3102254678C154945302 @default.
- W3102254678 hasConceptScore W3102254678C2776049877 @default.
- W3102254678 hasConceptScore W3102254678C2777783956 @default.
- W3102254678 hasConceptScore W3102254678C2780192828 @default.
- W3102254678 hasConceptScore W3102254678C31601959 @default.
- W3102254678 hasConceptScore W3102254678C41008148 @default.
- W3102254678 hasConceptScore W3102254678C50644808 @default.
- W3102254678 hasConceptScore W3102254678C71924100 @default.
- W3102254678 hasConceptScore W3102254678C81363708 @default.
- W3102254678 hasIssue "4" @default.
- W3102254678 hasLocation W31022546781 @default.
- W3102254678 hasLocation W31022546782 @default.
- W3102254678 hasLocation W31022546783 @default.
- W3102254678 hasOpenAccess W3102254678 @default.
- W3102254678 hasPrimaryLocation W31022546781 @default.
- W3102254678 hasRelatedWork W2337926734 @default.
- W3102254678 hasRelatedWork W2731899572 @default.
- W3102254678 hasRelatedWork W2738221750 @default.
- W3102254678 hasRelatedWork W3021430260 @default.
- W3102254678 hasRelatedWork W3156786002 @default.
- W3102254678 hasRelatedWork W4281780675 @default.
- W3102254678 hasRelatedWork W4315694979 @default.
- W3102254678 hasRelatedWork W4366224123 @default.
- W3102254678 hasRelatedWork W4381487685 @default.
- W3102254678 hasRelatedWork W564581980 @default.
- W3102254678 hasVolume "8" @default.
- W3102254678 isParatext "false" @default.