Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102294561> ?p ?o ?g. }
- W3102294561 endingPage "10" @default.
- W3102294561 startingPage "1" @default.
- W3102294561 abstract "The diversified service requirements in vehicular networks have stimulated the investigation to develop suitable technologies to satisfy the demands of vehicles. In this context, network slicing has been considered as one of the most promising architectural techniques to cater to the various strict service requirements. However, the unpredictability of the service traffic of each slice caused by the complex communication environments leads to a weak utilization of the allocated slicing resources. Thus, in this paper, we use Long Short-Term Memory- (LSTM-) based resource allocation to reduce the total system delay. Specially, we first formulated the radio resource allocation problem as a convex optimization problem to minimize system delay. Secondly, to further reduce delay, we design a Convolutional LSTM- (ConvLSTM-) based traffic prediction to predict traffic of complex slice services in vehicular networks, which is used in the resource allocation processing. And three types of traffic are considered, that is, SMS, phone, and web traffic. Finally, based on the predicted results, i.e., the traffic of each slice and user load distribution, we exploit the primal-dual interior-point method to explore the optimal slice weight of resources. Numerical results show that the average error rates of predicted SMS, phone, and web traffic are 25.0%, 12.4%, and 12.2%, respectively, and the total delay is significantly reduced, which verifies the accuracy of the traffic prediction and the effectiveness of the proposed strategy." @default.
- W3102294561 created "2020-11-23" @default.
- W3102294561 creator A5031886715 @default.
- W3102294561 creator A5051618428 @default.
- W3102294561 creator A5061695845 @default.
- W3102294561 creator A5074543050 @default.
- W3102294561 date "2020-11-17" @default.
- W3102294561 modified "2023-10-17" @default.
- W3102294561 title "Machine Learning-Based Resource Allocation Strategy for Network Slicing in Vehicular Networks" @default.
- W3102294561 cites W2076335243 @default.
- W3102294561 cites W2136848157 @default.
- W3102294561 cites W2190432600 @default.
- W3102294561 cites W2337472511 @default.
- W3102294561 cites W236026115 @default.
- W3102294561 cites W2580865186 @default.
- W3102294561 cites W2584942485 @default.
- W3102294561 cites W2602923095 @default.
- W3102294561 cites W2604174486 @default.
- W3102294561 cites W2612472936 @default.
- W3102294561 cites W2612759037 @default.
- W3102294561 cites W2762605243 @default.
- W3102294561 cites W2810482148 @default.
- W3102294561 cites W2894954515 @default.
- W3102294561 cites W2896890603 @default.
- W3102294561 cites W2913775178 @default.
- W3102294561 cites W2914795900 @default.
- W3102294561 cites W2921319277 @default.
- W3102294561 cites W2950926719 @default.
- W3102294561 cites W2955548771 @default.
- W3102294561 cites W2964048168 @default.
- W3102294561 cites W2964126607 @default.
- W3102294561 cites W2964273049 @default.
- W3102294561 cites W2999899230 @default.
- W3102294561 cites W3035012142 @default.
- W3102294561 cites W3035218782 @default.
- W3102294561 cites W3099769178 @default.
- W3102294561 cites W4250589301 @default.
- W3102294561 doi "https://doi.org/10.1155/2020/8836315" @default.
- W3102294561 hasPublicationYear "2020" @default.
- W3102294561 type Work @default.
- W3102294561 sameAs 3102294561 @default.
- W3102294561 citedByCount "2" @default.
- W3102294561 countsByYear W31022945612021 @default.
- W3102294561 countsByYear W31022945612022 @default.
- W3102294561 crossrefType "journal-article" @default.
- W3102294561 hasAuthorship W3102294561A5031886715 @default.
- W3102294561 hasAuthorship W3102294561A5051618428 @default.
- W3102294561 hasAuthorship W3102294561A5061695845 @default.
- W3102294561 hasAuthorship W3102294561A5074543050 @default.
- W3102294561 hasBestOaLocation W31022945611 @default.
- W3102294561 hasConcept C120314980 @default.
- W3102294561 hasConcept C136264566 @default.
- W3102294561 hasConcept C136764020 @default.
- W3102294561 hasConcept C151730666 @default.
- W3102294561 hasConcept C153646914 @default.
- W3102294561 hasConcept C162324750 @default.
- W3102294561 hasConcept C165696696 @default.
- W3102294561 hasConcept C206345919 @default.
- W3102294561 hasConcept C2776190703 @default.
- W3102294561 hasConcept C2779343474 @default.
- W3102294561 hasConcept C2780378061 @default.
- W3102294561 hasConcept C29202148 @default.
- W3102294561 hasConcept C31258907 @default.
- W3102294561 hasConcept C38652104 @default.
- W3102294561 hasConcept C41008148 @default.
- W3102294561 hasConcept C79403827 @default.
- W3102294561 hasConcept C86803240 @default.
- W3102294561 hasConceptScore W3102294561C120314980 @default.
- W3102294561 hasConceptScore W3102294561C136264566 @default.
- W3102294561 hasConceptScore W3102294561C136764020 @default.
- W3102294561 hasConceptScore W3102294561C151730666 @default.
- W3102294561 hasConceptScore W3102294561C153646914 @default.
- W3102294561 hasConceptScore W3102294561C162324750 @default.
- W3102294561 hasConceptScore W3102294561C165696696 @default.
- W3102294561 hasConceptScore W3102294561C206345919 @default.
- W3102294561 hasConceptScore W3102294561C2776190703 @default.
- W3102294561 hasConceptScore W3102294561C2779343474 @default.
- W3102294561 hasConceptScore W3102294561C2780378061 @default.
- W3102294561 hasConceptScore W3102294561C29202148 @default.
- W3102294561 hasConceptScore W3102294561C31258907 @default.
- W3102294561 hasConceptScore W3102294561C38652104 @default.
- W3102294561 hasConceptScore W3102294561C41008148 @default.
- W3102294561 hasConceptScore W3102294561C79403827 @default.
- W3102294561 hasConceptScore W3102294561C86803240 @default.
- W3102294561 hasFunder F4320321001 @default.
- W3102294561 hasLocation W31022945611 @default.
- W3102294561 hasOpenAccess W3102294561 @default.
- W3102294561 hasPrimaryLocation W31022945611 @default.
- W3102294561 hasRelatedWork W1568263432 @default.
- W3102294561 hasRelatedWork W1598943142 @default.
- W3102294561 hasRelatedWork W2121002532 @default.
- W3102294561 hasRelatedWork W2123218859 @default.
- W3102294561 hasRelatedWork W2128417237 @default.
- W3102294561 hasRelatedWork W2353608777 @default.
- W3102294561 hasRelatedWork W2755763331 @default.
- W3102294561 hasRelatedWork W2992761283 @default.
- W3102294561 hasRelatedWork W3206494224 @default.
- W3102294561 hasRelatedWork W4283067488 @default.