Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102413575> ?p ?o ?g. }
- W3102413575 abstract "A multi-fidelity surrogate model for highly nonlinear multiscale problems is proposed. It is based on the introduction of two different surrogate models and an adaptive on-the-fly switching. The two concurrent surrogates are built incrementally starting from a moderate set of evaluations of the full order model. Therefore, a reduced order model (ROM) is generated. Using a hybrid ROM-preconditioned FE solver additional effective stress-strain data is simulated while the number of samples is kept to a moderate level by using a dedicated and physics-guided sampling technique. Machine learning (ML) is subsequently used to build the second surrogate by means of artificial neural networks (ANN). Different ANN architectures are explored and the features used as inputs of the ANN are fine tuned in order to improve the overall quality of the ML model. Additional ML surrogates for the stress errors are generated. Therefore, conservative design guidelines for error surrogates are presented by adapting the loss functions of the ANN training in pure regression or pure classification settings. The error surrogates can be used as quality indicators in order to adaptively select the appropriate—i.e. efficient yet accurate—surrogate. Two strategies for the on-the-fly switching are investigated and a practicable and robust algorithm is proposed that eliminates relevant technical difficulties attributed to model switching. The provided algorithms and ANN design guidelines can easily be adopted for different problem settings and, thereby, they enable generalization of the used machine learning techniques for a wide range of applications. The resulting hybrid surrogate is employed in challenging multilevel FE simulations for a three-phase composite with pseudo-plastic micro-constituents. Numerical examples highlight the performance of the proposed approach." @default.
- W3102413575 created "2020-11-23" @default.
- W3102413575 creator A5026094651 @default.
- W3102413575 creator A5045453698 @default.
- W3102413575 creator A5047264152 @default.
- W3102413575 date "2019-05-03" @default.
- W3102413575 modified "2023-10-15" @default.
- W3102413575 title "On-the-Fly Adaptivity for Nonlinear Twoscale Simulations Using Artificial Neural Networks and Reduced Order Modeling" @default.
- W3102413575 cites W1633869374 @default.
- W3102413575 cites W1971171468 @default.
- W3102413575 cites W1976435787 @default.
- W3102413575 cites W1987190824 @default.
- W3102413575 cites W2028530724 @default.
- W3102413575 cites W2029422637 @default.
- W3102413575 cites W2051474952 @default.
- W3102413575 cites W2058415297 @default.
- W3102413575 cites W2058910428 @default.
- W3102413575 cites W2068873315 @default.
- W3102413575 cites W2085607286 @default.
- W3102413575 cites W2098938510 @default.
- W3102413575 cites W2111124526 @default.
- W3102413575 cites W2133924294 @default.
- W3102413575 cites W2167566096 @default.
- W3102413575 cites W2189471760 @default.
- W3102413575 cites W2227374294 @default.
- W3102413575 cites W2300160671 @default.
- W3102413575 cites W2593100558 @default.
- W3102413575 cites W2601865894 @default.
- W3102413575 cites W2614570149 @default.
- W3102413575 cites W2623217245 @default.
- W3102413575 cites W2623406726 @default.
- W3102413575 cites W2771368987 @default.
- W3102413575 cites W2777965033 @default.
- W3102413575 cites W2803170602 @default.
- W3102413575 cites W2885611161 @default.
- W3102413575 cites W2897923334 @default.
- W3102413575 cites W2919958648 @default.
- W3102413575 cites W4210952225 @default.
- W3102413575 doi "https://doi.org/10.3389/fmats.2019.00075" @default.
- W3102413575 hasPublicationYear "2019" @default.
- W3102413575 type Work @default.
- W3102413575 sameAs 3102413575 @default.
- W3102413575 citedByCount "45" @default.
- W3102413575 countsByYear W31024135752019 @default.
- W3102413575 countsByYear W31024135752020 @default.
- W3102413575 countsByYear W31024135752021 @default.
- W3102413575 countsByYear W31024135752022 @default.
- W3102413575 countsByYear W31024135752023 @default.
- W3102413575 crossrefType "journal-article" @default.
- W3102413575 hasAuthorship W3102413575A5026094651 @default.
- W3102413575 hasAuthorship W3102413575A5045453698 @default.
- W3102413575 hasAuthorship W3102413575A5047264152 @default.
- W3102413575 hasBestOaLocation W31024135751 @default.
- W3102413575 hasConcept C11413529 @default.
- W3102413575 hasConcept C119857082 @default.
- W3102413575 hasConcept C121332964 @default.
- W3102413575 hasConcept C131675550 @default.
- W3102413575 hasConcept C134306372 @default.
- W3102413575 hasConcept C154945302 @default.
- W3102413575 hasConcept C158622935 @default.
- W3102413575 hasConcept C177148314 @default.
- W3102413575 hasConcept C177264268 @default.
- W3102413575 hasConcept C199360897 @default.
- W3102413575 hasConcept C2776459999 @default.
- W3102413575 hasConcept C2778770139 @default.
- W3102413575 hasConcept C33923547 @default.
- W3102413575 hasConcept C41008148 @default.
- W3102413575 hasConcept C50644808 @default.
- W3102413575 hasConcept C62520636 @default.
- W3102413575 hasConcept C76155785 @default.
- W3102413575 hasConceptScore W3102413575C11413529 @default.
- W3102413575 hasConceptScore W3102413575C119857082 @default.
- W3102413575 hasConceptScore W3102413575C121332964 @default.
- W3102413575 hasConceptScore W3102413575C131675550 @default.
- W3102413575 hasConceptScore W3102413575C134306372 @default.
- W3102413575 hasConceptScore W3102413575C154945302 @default.
- W3102413575 hasConceptScore W3102413575C158622935 @default.
- W3102413575 hasConceptScore W3102413575C177148314 @default.
- W3102413575 hasConceptScore W3102413575C177264268 @default.
- W3102413575 hasConceptScore W3102413575C199360897 @default.
- W3102413575 hasConceptScore W3102413575C2776459999 @default.
- W3102413575 hasConceptScore W3102413575C2778770139 @default.
- W3102413575 hasConceptScore W3102413575C33923547 @default.
- W3102413575 hasConceptScore W3102413575C41008148 @default.
- W3102413575 hasConceptScore W3102413575C50644808 @default.
- W3102413575 hasConceptScore W3102413575C62520636 @default.
- W3102413575 hasConceptScore W3102413575C76155785 @default.
- W3102413575 hasFunder F4320320879 @default.
- W3102413575 hasLocation W31024135751 @default.
- W3102413575 hasLocation W31024135752 @default.
- W3102413575 hasLocation W31024135753 @default.
- W3102413575 hasLocation W31024135754 @default.
- W3102413575 hasOpenAccess W3102413575 @default.
- W3102413575 hasPrimaryLocation W31024135751 @default.
- W3102413575 hasRelatedWork W1006933851 @default.
- W3102413575 hasRelatedWork W1919390113 @default.
- W3102413575 hasRelatedWork W2037048986 @default.
- W3102413575 hasRelatedWork W2381850946 @default.
- W3102413575 hasRelatedWork W4248383205 @default.
- W3102413575 hasRelatedWork W4255427455 @default.