Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102492004> ?p ?o ?g. }
- W3102492004 endingPage "35" @default.
- W3102492004 startingPage "35" @default.
- W3102492004 abstract "We consider a large scale environment of turbulent reconnection that is fragmented into a number of randomly distributed Unstable Current Sheets (UCS), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when the particles interact with the UCS: (a) electric field acceleration, and (b) acceleration through reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index $1-2$, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from the test-particle simulation data, and we show that the classical Fokker-Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, the distributions of energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., 2017, whose parameters and the order of the fractional derivatives are inferred from the simulation data, and, solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test-particles. We discuss in detail the analysis of the simulation data and the criteria that allow judging the appropriateness of either an FTE or a classical FP equation as a transport model." @default.
- W3102492004 created "2020-11-23" @default.
- W3102492004 creator A5003210035 @default.
- W3102492004 creator A5022661255 @default.
- W3102492004 creator A5024024234 @default.
- W3102492004 creator A5090360376 @default.
- W3102492004 date "2017-10-27" @default.
- W3102492004 modified "2023-09-27" @default.
- W3102492004 title "Particle Acceleration and Fractional Transport in Turbulent Reconnection" @default.
- W3102492004 cites W1591294872 @default.
- W3102492004 cites W1643238572 @default.
- W3102492004 cites W1803753857 @default.
- W3102492004 cites W1963563982 @default.
- W3102492004 cites W1969794830 @default.
- W3102492004 cites W1970741498 @default.
- W3102492004 cites W1971186577 @default.
- W3102492004 cites W1971291912 @default.
- W3102492004 cites W1972929242 @default.
- W3102492004 cites W1973138292 @default.
- W3102492004 cites W1975439238 @default.
- W3102492004 cites W1975755686 @default.
- W3102492004 cites W1976316526 @default.
- W3102492004 cites W1984756998 @default.
- W3102492004 cites W1986105480 @default.
- W3102492004 cites W1986742608 @default.
- W3102492004 cites W1989454986 @default.
- W3102492004 cites W1989941945 @default.
- W3102492004 cites W1990559054 @default.
- W3102492004 cites W1991027291 @default.
- W3102492004 cites W1992671864 @default.
- W3102492004 cites W1994551122 @default.
- W3102492004 cites W1995559367 @default.
- W3102492004 cites W1997461667 @default.
- W3102492004 cites W2005145468 @default.
- W3102492004 cites W2020822429 @default.
- W3102492004 cites W2024326155 @default.
- W3102492004 cites W2037001080 @default.
- W3102492004 cites W2041818639 @default.
- W3102492004 cites W2045740653 @default.
- W3102492004 cites W2049511033 @default.
- W3102492004 cites W2058299158 @default.
- W3102492004 cites W2063993188 @default.
- W3102492004 cites W2064221922 @default.
- W3102492004 cites W2071031481 @default.
- W3102492004 cites W2073222146 @default.
- W3102492004 cites W2075989414 @default.
- W3102492004 cites W2077666921 @default.
- W3102492004 cites W2080065741 @default.
- W3102492004 cites W2084184604 @default.
- W3102492004 cites W2087099696 @default.
- W3102492004 cites W2088502000 @default.
- W3102492004 cites W2093067381 @default.
- W3102492004 cites W2093229153 @default.
- W3102492004 cites W2094148143 @default.
- W3102492004 cites W2096421529 @default.
- W3102492004 cites W2124625027 @default.
- W3102492004 cites W2139083397 @default.
- W3102492004 cites W2163610252 @default.
- W3102492004 cites W2167024038 @default.
- W3102492004 cites W2302880301 @default.
- W3102492004 cites W2605451261 @default.
- W3102492004 cites W2726581994 @default.
- W3102492004 cites W2963984675 @default.
- W3102492004 cites W3043739716 @default.
- W3102492004 cites W3083643854 @default.
- W3102492004 cites W3084457951 @default.
- W3102492004 cites W3098057478 @default.
- W3102492004 cites W3098072313 @default.
- W3102492004 cites W3100487165 @default.
- W3102492004 cites W3101277781 @default.
- W3102492004 cites W3101480572 @default.
- W3102492004 cites W3101519816 @default.
- W3102492004 cites W3101870189 @default.
- W3102492004 cites W3102455984 @default.
- W3102492004 cites W3105860084 @default.
- W3102492004 cites W3105921065 @default.
- W3102492004 cites W337816440 @default.
- W3102492004 cites W4211013346 @default.
- W3102492004 cites W4231695981 @default.
- W3102492004 cites W4250694974 @default.
- W3102492004 cites W4379373113 @default.
- W3102492004 doi "https://doi.org/10.3847/1538-4357/aa8ee8" @default.
- W3102492004 hasPublicationYear "2017" @default.
- W3102492004 type Work @default.
- W3102492004 sameAs 3102492004 @default.
- W3102492004 citedByCount "29" @default.
- W3102492004 countsByYear W31024920042018 @default.
- W3102492004 countsByYear W31024920042019 @default.
- W3102492004 countsByYear W31024920042020 @default.
- W3102492004 countsByYear W31024920042021 @default.
- W3102492004 countsByYear W31024920042022 @default.
- W3102492004 countsByYear W31024920042023 @default.
- W3102492004 crossrefType "journal-article" @default.
- W3102492004 hasAuthorship W3102492004A5003210035 @default.
- W3102492004 hasAuthorship W3102492004A5022661255 @default.
- W3102492004 hasAuthorship W3102492004A5024024234 @default.
- W3102492004 hasAuthorship W3102492004A5090360376 @default.
- W3102492004 hasBestOaLocation W31024920041 @default.