Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102503485> ?p ?o ?g. }
- W3102503485 endingPage "3655" @default.
- W3102503485 startingPage "3655" @default.
- W3102503485 abstract "Automatic and efficient ground penetrating radar (GPR) data analysis remains a bottleneck, especially restricting applications in real-time monitoring systems. Deep learning approaches have good practice in automatic object identification, but their intensive data requirement has reduced their applicability. This paper developed a machine learning framework based on wavelet scattering networks to analyze GPR data for subsurface pipeline identification. Wavelet scattering network is functionally equivalent to convolutional neural networks, and its null-parameter property is intended for non-intensive datasets. A double-channel framework is designed with wavelet scattering networks followed by support vector machines to determine the existence of pipelines on vertical and horizontal traces separately. Classification accuracy rates arrive around 98% and 95% for datasets without and with noises, respectively, as well as 97% for considering surface roughness. Pipeline locations and diameters are convenient to determine from the reconstructed profiles of both simulated and practical GPR signals. However, the results of 5 cm pipelines are sensitive to noises. Nonetheless, the developed machine learning approach presents promising applicability in subsurface pipeline identification." @default.
- W3102503485 created "2020-11-23" @default.
- W3102503485 creator A5044157542 @default.
- W3102503485 creator A5090872483 @default.
- W3102503485 date "2020-11-07" @default.
- W3102503485 modified "2023-10-16" @default.
- W3102503485 title "Wavelet Scattering Network-Based Machine Learning for Ground Penetrating Radar Imaging: Application in Pipeline Identification" @default.
- W3102503485 cites W1994906459 @default.
- W3102503485 cites W1999738916 @default.
- W3102503485 cites W2004281401 @default.
- W3102503485 cites W2035752142 @default.
- W3102503485 cites W2059890424 @default.
- W3102503485 cites W2070596432 @default.
- W3102503485 cites W2072072671 @default.
- W3102503485 cites W2074446380 @default.
- W3102503485 cites W2077655268 @default.
- W3102503485 cites W2119552031 @default.
- W3102503485 cites W2126789657 @default.
- W3102503485 cites W2151786856 @default.
- W3102503485 cites W2467399594 @default.
- W3102503485 cites W2518909974 @default.
- W3102503485 cites W2750901440 @default.
- W3102503485 cites W2773189108 @default.
- W3102503485 cites W2791987303 @default.
- W3102503485 cites W2794881565 @default.
- W3102503485 cites W2801494682 @default.
- W3102503485 cites W2804675641 @default.
- W3102503485 cites W2805748005 @default.
- W3102503485 cites W2896452691 @default.
- W3102503485 cites W2896523720 @default.
- W3102503485 cites W2897109612 @default.
- W3102503485 cites W2905734412 @default.
- W3102503485 cites W2928535876 @default.
- W3102503485 cites W2933974480 @default.
- W3102503485 cites W2969024480 @default.
- W3102503485 cites W2970130025 @default.
- W3102503485 cites W2985302978 @default.
- W3102503485 cites W3006855808 @default.
- W3102503485 cites W3014608870 @default.
- W3102503485 cites W3015278724 @default.
- W3102503485 cites W3028427357 @default.
- W3102503485 cites W3033817716 @default.
- W3102503485 cites W3034147267 @default.
- W3102503485 cites W3046130646 @default.
- W3102503485 cites W4239510810 @default.
- W3102503485 doi "https://doi.org/10.3390/rs12213655" @default.
- W3102503485 hasPublicationYear "2020" @default.
- W3102503485 type Work @default.
- W3102503485 sameAs 3102503485 @default.
- W3102503485 citedByCount "17" @default.
- W3102503485 countsByYear W31025034852021 @default.
- W3102503485 countsByYear W31025034852022 @default.
- W3102503485 countsByYear W31025034852023 @default.
- W3102503485 crossrefType "journal-article" @default.
- W3102503485 hasAuthorship W3102503485A5044157542 @default.
- W3102503485 hasAuthorship W3102503485A5090872483 @default.
- W3102503485 hasBestOaLocation W31025034851 @default.
- W3102503485 hasConcept C116834253 @default.
- W3102503485 hasConcept C119857082 @default.
- W3102503485 hasConcept C12267149 @default.
- W3102503485 hasConcept C124101348 @default.
- W3102503485 hasConcept C127413603 @default.
- W3102503485 hasConcept C149635348 @default.
- W3102503485 hasConcept C153180895 @default.
- W3102503485 hasConcept C154945302 @default.
- W3102503485 hasConcept C175309249 @default.
- W3102503485 hasConcept C199360897 @default.
- W3102503485 hasConcept C2780513914 @default.
- W3102503485 hasConcept C41008148 @default.
- W3102503485 hasConcept C43521106 @default.
- W3102503485 hasConcept C47432892 @default.
- W3102503485 hasConcept C50644808 @default.
- W3102503485 hasConcept C554190296 @default.
- W3102503485 hasConcept C59822182 @default.
- W3102503485 hasConcept C71813955 @default.
- W3102503485 hasConcept C76155785 @default.
- W3102503485 hasConcept C81363708 @default.
- W3102503485 hasConcept C86803240 @default.
- W3102503485 hasConcept C87717796 @default.
- W3102503485 hasConceptScore W3102503485C116834253 @default.
- W3102503485 hasConceptScore W3102503485C119857082 @default.
- W3102503485 hasConceptScore W3102503485C12267149 @default.
- W3102503485 hasConceptScore W3102503485C124101348 @default.
- W3102503485 hasConceptScore W3102503485C127413603 @default.
- W3102503485 hasConceptScore W3102503485C149635348 @default.
- W3102503485 hasConceptScore W3102503485C153180895 @default.
- W3102503485 hasConceptScore W3102503485C154945302 @default.
- W3102503485 hasConceptScore W3102503485C175309249 @default.
- W3102503485 hasConceptScore W3102503485C199360897 @default.
- W3102503485 hasConceptScore W3102503485C2780513914 @default.
- W3102503485 hasConceptScore W3102503485C41008148 @default.
- W3102503485 hasConceptScore W3102503485C43521106 @default.
- W3102503485 hasConceptScore W3102503485C47432892 @default.
- W3102503485 hasConceptScore W3102503485C50644808 @default.
- W3102503485 hasConceptScore W3102503485C554190296 @default.
- W3102503485 hasConceptScore W3102503485C59822182 @default.
- W3102503485 hasConceptScore W3102503485C71813955 @default.
- W3102503485 hasConceptScore W3102503485C76155785 @default.