Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102509263> ?p ?o ?g. }
- W3102509263 endingPage "213" @default.
- W3102509263 startingPage "204" @default.
- W3102509263 abstract "The amounts of muscle and fat in a person’s body, known as body composition, are correlated with cancer risks, cancer survival, and cardiovascular risk. The current gold standard for measuring body composition requires time-consuming manual segmentation of CT images by an expert reader. In this work, we describe a two-step process to fully automate the analysis of CT body composition using a DenseNet to select the CT slice and U-Net to perform segmentation. We train and test our methods on independent cohorts. Our results show Dice scores (0.95−0.98) and correlation coefficients (R = 0.99) that are favorable compared to human readers. These results suggest that fully automated body composition analysis is feasible, which could enable both clinical use and large-scale population studies." @default.
- W3102509263 created "2020-11-23" @default.
- W3102509263 creator A5007639788 @default.
- W3102509263 creator A5027410979 @default.
- W3102509263 creator A5028547202 @default.
- W3102509263 creator A5029519742 @default.
- W3102509263 creator A5031717380 @default.
- W3102509263 creator A5036335426 @default.
- W3102509263 creator A5037464744 @default.
- W3102509263 creator A5044168105 @default.
- W3102509263 creator A5047496278 @default.
- W3102509263 creator A5051257870 @default.
- W3102509263 creator A5054432618 @default.
- W3102509263 creator A5061005283 @default.
- W3102509263 creator A5064728099 @default.
- W3102509263 creator A5069010864 @default.
- W3102509263 creator A5075085493 @default.
- W3102509263 creator A5079669314 @default.
- W3102509263 creator A5082536478 @default.
- W3102509263 creator A5089624408 @default.
- W3102509263 date "2018-01-01" @default.
- W3102509263 modified "2023-10-16" @default.
- W3102509263 title "Fully-Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional Neural Networks" @default.
- W3102509263 cites W1901129140 @default.
- W3102509263 cites W2097022747 @default.
- W3102509263 cites W2118558111 @default.
- W3102509263 cites W2127424726 @default.
- W3102509263 cites W2150719741 @default.
- W3102509263 cites W2271557391 @default.
- W3102509263 cites W2285509918 @default.
- W3102509263 cites W2549139847 @default.
- W3102509263 cites W2616736149 @default.
- W3102509263 cites W2643397491 @default.
- W3102509263 cites W2750845740 @default.
- W3102509263 cites W2752052309 @default.
- W3102509263 cites W2790321484 @default.
- W3102509263 cites W2809397712 @default.
- W3102509263 cites W2962914239 @default.
- W3102509263 cites W2963446712 @default.
- W3102509263 doi "https://doi.org/10.1007/978-3-030-01201-4_22" @default.
- W3102509263 hasPublicationYear "2018" @default.
- W3102509263 type Work @default.
- W3102509263 sameAs 3102509263 @default.
- W3102509263 citedByCount "24" @default.
- W3102509263 countsByYear W31025092632019 @default.
- W3102509263 countsByYear W31025092632020 @default.
- W3102509263 countsByYear W31025092632021 @default.
- W3102509263 countsByYear W31025092632022 @default.
- W3102509263 countsByYear W31025092632023 @default.
- W3102509263 crossrefType "book-chapter" @default.
- W3102509263 hasAuthorship W3102509263A5007639788 @default.
- W3102509263 hasAuthorship W3102509263A5027410979 @default.
- W3102509263 hasAuthorship W3102509263A5028547202 @default.
- W3102509263 hasAuthorship W3102509263A5029519742 @default.
- W3102509263 hasAuthorship W3102509263A5031717380 @default.
- W3102509263 hasAuthorship W3102509263A5036335426 @default.
- W3102509263 hasAuthorship W3102509263A5037464744 @default.
- W3102509263 hasAuthorship W3102509263A5044168105 @default.
- W3102509263 hasAuthorship W3102509263A5047496278 @default.
- W3102509263 hasAuthorship W3102509263A5051257870 @default.
- W3102509263 hasAuthorship W3102509263A5054432618 @default.
- W3102509263 hasAuthorship W3102509263A5061005283 @default.
- W3102509263 hasAuthorship W3102509263A5064728099 @default.
- W3102509263 hasAuthorship W3102509263A5069010864 @default.
- W3102509263 hasAuthorship W3102509263A5075085493 @default.
- W3102509263 hasAuthorship W3102509263A5079669314 @default.
- W3102509263 hasAuthorship W3102509263A5082536478 @default.
- W3102509263 hasAuthorship W3102509263A5089624408 @default.
- W3102509263 hasBestOaLocation W31025092632 @default.
- W3102509263 hasConcept C105795698 @default.
- W3102509263 hasConcept C138885662 @default.
- W3102509263 hasConcept C153180895 @default.
- W3102509263 hasConcept C154945302 @default.
- W3102509263 hasConcept C22029948 @default.
- W3102509263 hasConcept C2908647359 @default.
- W3102509263 hasConcept C33923547 @default.
- W3102509263 hasConcept C40231798 @default.
- W3102509263 hasConcept C41008148 @default.
- W3102509263 hasConcept C41895202 @default.
- W3102509263 hasConcept C71924100 @default.
- W3102509263 hasConcept C81363708 @default.
- W3102509263 hasConcept C89600930 @default.
- W3102509263 hasConcept C99454951 @default.
- W3102509263 hasConceptScore W3102509263C105795698 @default.
- W3102509263 hasConceptScore W3102509263C138885662 @default.
- W3102509263 hasConceptScore W3102509263C153180895 @default.
- W3102509263 hasConceptScore W3102509263C154945302 @default.
- W3102509263 hasConceptScore W3102509263C22029948 @default.
- W3102509263 hasConceptScore W3102509263C2908647359 @default.
- W3102509263 hasConceptScore W3102509263C33923547 @default.
- W3102509263 hasConceptScore W3102509263C40231798 @default.
- W3102509263 hasConceptScore W3102509263C41008148 @default.
- W3102509263 hasConceptScore W3102509263C41895202 @default.
- W3102509263 hasConceptScore W3102509263C71924100 @default.
- W3102509263 hasConceptScore W3102509263C81363708 @default.
- W3102509263 hasConceptScore W3102509263C89600930 @default.
- W3102509263 hasConceptScore W3102509263C99454951 @default.
- W3102509263 hasLocation W31025092631 @default.