Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102521719> ?p ?o ?g. }
- W3102521719 abstract "The spacecraft's telemetry data is the only basis for the ground transportation management system to monitor its on-orbit operating status. Anomaly detection of spacecraft has become an important means to enhance the reliability of spacecraft on-orbit operation. There are many ways to detect anomalies in spacecraft. With the increasing amount of telemetry data and the improvement of modern computing capabilities, anomaly detection methods have gradually transitioned to data-driven methods. Because the data-driven approach does not require a large amount of expert experience, it also tolerates that operators do not have sufficient theoretical knowledge. However, telemetry data has the characteristics of large scale, high dimensions, complex relationships, and strong professionalism. These bring severe challenges to achieve high detection rates, low false detection rates, and strong interpretive goals for anomaly detection methods. Current spacecraft monitoring systems generally only perform anomaly detection for a single parameter, and few studies have provided clear and effective methods for multivariate anomaly detection. This paper proposes an anomaly detection method for multivariate telemetry data. The idea is to propose a hierarchical clustering method based on the maximum information coefficient, mining the correlation between telemetry parameters, grouping the telemetry parameters to form a subspace; using the LSTM method to perform single-parameter anomaly detection on the subspace; using weighting The averaging method integrates the anomaly detection results in the subspace to achieve multivariate anomaly detection. The experiments were performed on a real satellite historical data set of the Beijing Aerospace Flight Control Center. The expert evaluation of the agency proves that the method proposed in this paper is feasible and can preliminary excavate the correlation between telemetry parameters. Although the accuracy needs to be improved, there is still room for optimization." @default.
- W3102521719 created "2020-11-23" @default.
- W3102521719 creator A5006437795 @default.
- W3102521719 creator A5026534062 @default.
- W3102521719 creator A5055529008 @default.
- W3102521719 creator A5066369280 @default.
- W3102521719 creator A5089402019 @default.
- W3102521719 date "2020-11-09" @default.
- W3102521719 modified "2023-09-26" @default.
- W3102521719 title "Anomaly Detection for Spacecraft using Hierarchical Agglomerative Clustering based on Maximal Information Coefficient" @default.
- W3102521719 cites W1492446797 @default.
- W3102521719 cites W1970502348 @default.
- W3102521719 cites W1984500388 @default.
- W3102521719 cites W2006533296 @default.
- W3102521719 cites W2047672318 @default.
- W3102521719 cites W2056081083 @default.
- W3102521719 cites W2064158558 @default.
- W3102521719 cites W2064675550 @default.
- W3102521719 cites W2079361215 @default.
- W3102521719 cites W2091319256 @default.
- W3102521719 cites W2105647833 @default.
- W3102521719 cites W2122646361 @default.
- W3102521719 cites W2140095548 @default.
- W3102521719 cites W2144182447 @default.
- W3102521719 cites W2159945133 @default.
- W3102521719 cites W2186910770 @default.
- W3102521719 cites W219179425 @default.
- W3102521719 cites W2313243577 @default.
- W3102521719 cites W2337344967 @default.
- W3102521719 cites W2411741275 @default.
- W3102521719 cites W2535642622 @default.
- W3102521719 cites W2766761849 @default.
- W3102521719 cites W4238722012 @default.
- W3102521719 cites W4254420769 @default.
- W3102521719 cites W67272025 @default.
- W3102521719 doi "https://doi.org/10.1109/iciea48937.2020.9248417" @default.
- W3102521719 hasPublicationYear "2020" @default.
- W3102521719 type Work @default.
- W3102521719 sameAs 3102521719 @default.
- W3102521719 citedByCount "4" @default.
- W3102521719 countsByYear W31025217192021 @default.
- W3102521719 countsByYear W31025217192022 @default.
- W3102521719 countsByYear W31025217192023 @default.
- W3102521719 crossrefType "proceedings-article" @default.
- W3102521719 hasAuthorship W3102521719A5006437795 @default.
- W3102521719 hasAuthorship W3102521719A5026534062 @default.
- W3102521719 hasAuthorship W3102521719A5055529008 @default.
- W3102521719 hasAuthorship W3102521719A5066369280 @default.
- W3102521719 hasAuthorship W3102521719A5089402019 @default.
- W3102521719 hasConcept C119857082 @default.
- W3102521719 hasConcept C121332964 @default.
- W3102521719 hasConcept C124101348 @default.
- W3102521719 hasConcept C127413603 @default.
- W3102521719 hasConcept C12997251 @default.
- W3102521719 hasConcept C146978453 @default.
- W3102521719 hasConcept C154945302 @default.
- W3102521719 hasConcept C161584116 @default.
- W3102521719 hasConcept C183115368 @default.
- W3102521719 hasConcept C183121708 @default.
- W3102521719 hasConcept C19269812 @default.
- W3102521719 hasConcept C205649164 @default.
- W3102521719 hasConcept C24890656 @default.
- W3102521719 hasConcept C26873012 @default.
- W3102521719 hasConcept C29829512 @default.
- W3102521719 hasConcept C32834561 @default.
- W3102521719 hasConcept C41008148 @default.
- W3102521719 hasConcept C62649853 @default.
- W3102521719 hasConcept C73555534 @default.
- W3102521719 hasConcept C739882 @default.
- W3102521719 hasConcept C76155785 @default.
- W3102521719 hasConceptScore W3102521719C119857082 @default.
- W3102521719 hasConceptScore W3102521719C121332964 @default.
- W3102521719 hasConceptScore W3102521719C124101348 @default.
- W3102521719 hasConceptScore W3102521719C127413603 @default.
- W3102521719 hasConceptScore W3102521719C12997251 @default.
- W3102521719 hasConceptScore W3102521719C146978453 @default.
- W3102521719 hasConceptScore W3102521719C154945302 @default.
- W3102521719 hasConceptScore W3102521719C161584116 @default.
- W3102521719 hasConceptScore W3102521719C183115368 @default.
- W3102521719 hasConceptScore W3102521719C183121708 @default.
- W3102521719 hasConceptScore W3102521719C19269812 @default.
- W3102521719 hasConceptScore W3102521719C205649164 @default.
- W3102521719 hasConceptScore W3102521719C24890656 @default.
- W3102521719 hasConceptScore W3102521719C26873012 @default.
- W3102521719 hasConceptScore W3102521719C29829512 @default.
- W3102521719 hasConceptScore W3102521719C32834561 @default.
- W3102521719 hasConceptScore W3102521719C41008148 @default.
- W3102521719 hasConceptScore W3102521719C62649853 @default.
- W3102521719 hasConceptScore W3102521719C73555534 @default.
- W3102521719 hasConceptScore W3102521719C739882 @default.
- W3102521719 hasConceptScore W3102521719C76155785 @default.
- W3102521719 hasFunder F4320321001 @default.
- W3102521719 hasLocation W31025217191 @default.
- W3102521719 hasOpenAccess W3102521719 @default.
- W3102521719 hasPrimaryLocation W31025217191 @default.
- W3102521719 hasRelatedWork W2042251007 @default.
- W3102521719 hasRelatedWork W2319833224 @default.
- W3102521719 hasRelatedWork W2769232333 @default.
- W3102521719 hasRelatedWork W2874540278 @default.
- W3102521719 hasRelatedWork W3207133806 @default.