Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102657768> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3102657768 abstract "A bstract In this work we present the ultra-relativistic $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> -extended AdS Chern-Simons supergravity theories in three spacetime dimensions invariant under $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> -extended AdS Carroll superalgebras. We first consider the (2 , 0) and (1 , 1) cases; subsequently, we generalize our analysis to $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> = ( $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> , 0), with $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> even, and to $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> = ( p, q ), with p, q > 0. The $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> -extended AdS Carroll superalgebras are obtained through the Carrollian (i.e., ultra-relativistic) contraction applied to an so (2) extension of $$ mathfrak{osp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>osp</mml:mi> </mml:math> (2|2) ⊗ $$ mathfrak{sp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>sp</mml:mi> </mml:math> (2), to $$ mathfrak{osp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>osp</mml:mi> </mml:math> (2|1) ⊗ $$ mathfrak{osp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>osp</mml:mi> </mml:math> (2 , 1), to an $$ mathfrak{so}left(mathcal{N}right) $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>so</mml:mi> <mml:mfenced> <mml:mi>N</mml:mi> </mml:mfenced> </mml:math> extension of $$ mathfrak{osp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>osp</mml:mi> </mml:math> (2| $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> ) ⊗ $$ mathfrak{sp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>sp</mml:mi> </mml:math> (2), and to the direct sum of an $$ mathfrak{so} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>so</mml:mi> </mml:math> ( p ) ⊕ $$ mathfrak{so} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>so</mml:mi> </mml:math> ( q ) algebra and $$ mathfrak{osp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>osp</mml:mi> </mml:math> (2 |p ) ⊗ $$ mathfrak{osp} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>osp</mml:mi> </mml:math> (2 , q ), respectively. We also analyze the flat limit ( ℓ → ∞, being ℓ the length parameter) of the aforementioned $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> -extended Chern-Simons AdS Carroll supergravities, in which we recover the ultra-relativistic $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> -extended (flat) Chern-Simons supergravity theories invariant under $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> -extended super-Carroll algebras. The flat limit is applied at the level of the superalgebras, Chern-Simons actions, supersymmetry transformation laws, and field equations." @default.
- W3102657768 created "2020-11-23" @default.
- W3102657768 creator A5068727655 @default.
- W3102657768 creator A5072531870 @default.
- W3102657768 date "2020-02-24" @default.
- W3102657768 modified "2023-09-27" @default.
- W3102657768 title "$$ mathcal{N} $$-extended Chern-Simons Carrollian supergravities in 2 + 1 spacetime dimensions" @default.
- W3102657768 cites W1561765380 @default.
- W3102657768 cites W1851741886 @default.
- W3102657768 cites W1895358453 @default.
- W3102657768 cites W1967486392 @default.
- W3102657768 cites W1990574598 @default.
- W3102657768 cites W1994275804 @default.
- W3102657768 cites W2007432521 @default.
- W3102657768 cites W2021727540 @default.
- W3102657768 cites W2025148421 @default.
- W3102657768 cites W2045508613 @default.
- W3102657768 cites W2045680778 @default.
- W3102657768 cites W2057491063 @default.
- W3102657768 cites W2058254359 @default.
- W3102657768 cites W2075579880 @default.
- W3102657768 cites W2078740374 @default.
- W3102657768 cites W2121440605 @default.
- W3102657768 cites W2132834597 @default.
- W3102657768 cites W2141917284 @default.
- W3102657768 cites W2169122034 @default.
- W3102657768 cites W2522723344 @default.
- W3102657768 cites W2540247811 @default.
- W3102657768 cites W2581025981 @default.
- W3102657768 cites W2763581838 @default.
- W3102657768 cites W2789169494 @default.
- W3102657768 cites W2810876123 @default.
- W3102657768 cites W2896123898 @default.
- W3102657768 cites W2898562229 @default.
- W3102657768 cites W2903756956 @default.
- W3102657768 cites W2911671192 @default.
- W3102657768 cites W2942657685 @default.
- W3102657768 cites W2951878236 @default.
- W3102657768 cites W2952005827 @default.
- W3102657768 cites W2969251908 @default.
- W3102657768 cites W2994760087 @default.
- W3102657768 cites W3098451670 @default.
- W3102657768 cites W3098841429 @default.
- W3102657768 cites W3099607345 @default.
- W3102657768 cites W3100053022 @default.
- W3102657768 cites W3100127347 @default.
- W3102657768 cites W3100357085 @default.
- W3102657768 cites W3100485892 @default.
- W3102657768 cites W3101102156 @default.
- W3102657768 cites W3102554076 @default.
- W3102657768 cites W3103525820 @default.
- W3102657768 cites W3104433305 @default.
- W3102657768 cites W3105824118 @default.
- W3102657768 cites W3106166483 @default.
- W3102657768 cites W4255169721 @default.
- W3102657768 cites W900795363 @default.
- W3102657768 doi "https://doi.org/10.1007/jhep02(2020)128" @default.
- W3102657768 hasPublicationYear "2020" @default.
- W3102657768 type Work @default.
- W3102657768 sameAs 3102657768 @default.
- W3102657768 citedByCount "10" @default.
- W3102657768 countsByYear W31026577682020 @default.
- W3102657768 countsByYear W31026577682021 @default.
- W3102657768 countsByYear W31026577682022 @default.
- W3102657768 countsByYear W31026577682023 @default.
- W3102657768 crossrefType "journal-article" @default.
- W3102657768 hasAuthorship W3102657768A5068727655 @default.
- W3102657768 hasAuthorship W3102657768A5072531870 @default.
- W3102657768 hasBestOaLocation W31026577681 @default.
- W3102657768 hasConcept C11413529 @default.
- W3102657768 hasConcept C121332964 @default.
- W3102657768 hasConcept C33923547 @default.
- W3102657768 hasConceptScore W3102657768C11413529 @default.
- W3102657768 hasConceptScore W3102657768C121332964 @default.
- W3102657768 hasConceptScore W3102657768C33923547 @default.
- W3102657768 hasIssue "2" @default.
- W3102657768 hasLocation W31026577681 @default.
- W3102657768 hasLocation W31026577682 @default.
- W3102657768 hasLocation W31026577683 @default.
- W3102657768 hasOpenAccess W3102657768 @default.
- W3102657768 hasPrimaryLocation W31026577681 @default.
- W3102657768 hasRelatedWork W1536502753 @default.
- W3102657768 hasRelatedWork W2902782467 @default.
- W3102657768 hasRelatedWork W2935759653 @default.
- W3102657768 hasRelatedWork W3105167352 @default.
- W3102657768 hasRelatedWork W3148032049 @default.
- W3102657768 hasRelatedWork W54078636 @default.
- W3102657768 hasRelatedWork W1501425562 @default.
- W3102657768 hasRelatedWork W2298861036 @default.
- W3102657768 hasRelatedWork W2954470139 @default.
- W3102657768 hasRelatedWork W3084825885 @default.
- W3102657768 hasVolume "2020" @default.
- W3102657768 isParatext "false" @default.
- W3102657768 isRetracted "false" @default.
- W3102657768 magId "3102657768" @default.
- W3102657768 workType "article" @default.