Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102662562> ?p ?o ?g. }
- W3102662562 endingPage "10" @default.
- W3102662562 startingPage "1" @default.
- W3102662562 abstract "Segmentation of a touching component to separate its constituent text and nontext parts is always a very crucial but challenging task toward developing a comprehensive document image processing (DIP) system. This is because, irrespective of document types, either printed or handwritten, the nontext parts need to be suppressed first before processing the text parts through an optical character recognition (OCR) system. Although a good number of attempts have been made to address this issue for printed documents, the same for regular handwritten document images is almost none. However, the appearance of touching components where a nontext part gets joined with a text part is a common issue in freestyle handwriting. To this end, in this work, we tailor-make a generative adversarial network (GAN)-based model with a suitable loss function that we name tsegGAN. We also prepare an in-house data set by collecting touching components from different real-world handwritten documents to evaluate our model. The performance comparison of our model with state-of-the-art GAN models shows that tsegGAN has outperformed the others with a significant margin." @default.
- W3102662562 created "2020-11-23" @default.
- W3102662562 creator A5027067767 @default.
- W3102662562 creator A5076132472 @default.
- W3102662562 creator A5082599641 @default.
- W3102662562 date "2021-01-01" @default.
- W3102662562 modified "2023-10-16" @default.
- W3102662562 title "tsegGAN: A Generative Adversarial Network for Segmenting Touching Nontext Components From Text Ones in Handwriting" @default.
- W3102662562 cites W1547209727 @default.
- W3102662562 cites W1997911821 @default.
- W3102662562 cites W2008109610 @default.
- W3102662562 cites W2024603080 @default.
- W3102662562 cites W2035575611 @default.
- W3102662562 cites W2064190344 @default.
- W3102662562 cites W2077584575 @default.
- W3102662562 cites W2078358542 @default.
- W3102662562 cites W2082050119 @default.
- W3102662562 cites W2103781424 @default.
- W3102662562 cites W2104806940 @default.
- W3102662562 cites W2133059825 @default.
- W3102662562 cites W2135231474 @default.
- W3102662562 cites W2145835961 @default.
- W3102662562 cites W2159193984 @default.
- W3102662562 cites W2160581822 @default.
- W3102662562 cites W2162075956 @default.
- W3102662562 cites W2194775991 @default.
- W3102662562 cites W2593414223 @default.
- W3102662562 cites W2594265094 @default.
- W3102662562 cites W2629598536 @default.
- W3102662562 cites W2787590349 @default.
- W3102662562 cites W2789861020 @default.
- W3102662562 cites W2798094831 @default.
- W3102662562 cites W2809771599 @default.
- W3102662562 cites W2906383034 @default.
- W3102662562 cites W2962793481 @default.
- W3102662562 cites W2963073614 @default.
- W3102662562 cites W2963470893 @default.
- W3102662562 cites W2964024144 @default.
- W3102662562 cites W2982322487 @default.
- W3102662562 doi "https://doi.org/10.1109/tim.2020.3038277" @default.
- W3102662562 hasPublicationYear "2021" @default.
- W3102662562 type Work @default.
- W3102662562 sameAs 3102662562 @default.
- W3102662562 citedByCount "5" @default.
- W3102662562 countsByYear W31026625622021 @default.
- W3102662562 countsByYear W31026625622022 @default.
- W3102662562 countsByYear W31026625622023 @default.
- W3102662562 crossrefType "journal-article" @default.
- W3102662562 hasAuthorship W3102662562A5027067767 @default.
- W3102662562 hasAuthorship W3102662562A5076132472 @default.
- W3102662562 hasAuthorship W3102662562A5082599641 @default.
- W3102662562 hasConcept C112640561 @default.
- W3102662562 hasConcept C115961682 @default.
- W3102662562 hasConcept C119857082 @default.
- W3102662562 hasConcept C121332964 @default.
- W3102662562 hasConcept C127413603 @default.
- W3102662562 hasConcept C14036430 @default.
- W3102662562 hasConcept C153180895 @default.
- W3102662562 hasConcept C154945302 @default.
- W3102662562 hasConcept C168167062 @default.
- W3102662562 hasConcept C177264268 @default.
- W3102662562 hasConcept C193435613 @default.
- W3102662562 hasConcept C199360897 @default.
- W3102662562 hasConcept C201995342 @default.
- W3102662562 hasConcept C204321447 @default.
- W3102662562 hasConcept C2524010 @default.
- W3102662562 hasConcept C2779386606 @default.
- W3102662562 hasConcept C2780451532 @default.
- W3102662562 hasConcept C2780861071 @default.
- W3102662562 hasConcept C2987247673 @default.
- W3102662562 hasConcept C33923547 @default.
- W3102662562 hasConcept C37736160 @default.
- W3102662562 hasConcept C39890363 @default.
- W3102662562 hasConcept C41008148 @default.
- W3102662562 hasConcept C44868376 @default.
- W3102662562 hasConcept C52622490 @default.
- W3102662562 hasConcept C546480517 @default.
- W3102662562 hasConcept C67905146 @default.
- W3102662562 hasConcept C774472 @default.
- W3102662562 hasConcept C78458016 @default.
- W3102662562 hasConcept C86803240 @default.
- W3102662562 hasConcept C89600930 @default.
- W3102662562 hasConcept C97355855 @default.
- W3102662562 hasConceptScore W3102662562C112640561 @default.
- W3102662562 hasConceptScore W3102662562C115961682 @default.
- W3102662562 hasConceptScore W3102662562C119857082 @default.
- W3102662562 hasConceptScore W3102662562C121332964 @default.
- W3102662562 hasConceptScore W3102662562C127413603 @default.
- W3102662562 hasConceptScore W3102662562C14036430 @default.
- W3102662562 hasConceptScore W3102662562C153180895 @default.
- W3102662562 hasConceptScore W3102662562C154945302 @default.
- W3102662562 hasConceptScore W3102662562C168167062 @default.
- W3102662562 hasConceptScore W3102662562C177264268 @default.
- W3102662562 hasConceptScore W3102662562C193435613 @default.
- W3102662562 hasConceptScore W3102662562C199360897 @default.
- W3102662562 hasConceptScore W3102662562C201995342 @default.
- W3102662562 hasConceptScore W3102662562C204321447 @default.
- W3102662562 hasConceptScore W3102662562C2524010 @default.