Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102671818> ?p ?o ?g. }
- W3102671818 abstract "When the flow is sufficiently rarefied, a temperature gradient, for example, between two walls separated by a few mean free paths, induces a gas flow—an observation attributed to the thermostress convection effects at the microscale. The dynamics of the overall thermostress convection process is governed by the Boltzmann equation—an integrodifferential equation describing the evolution of the molecular distribution function in six-dimensional phase space—which models dilute gas behavior at the molecular level to accurately describe a wide range of flow phenomena. Approaches for solving the full Boltzmann equation with general intermolecular interactions rely on two perspectives: one stochastic in nature often delegated to the direct simulation Monte Carlo (DSMC) method and the others deterministic by virtue. Among the deterministic approaches, the discontinuous Galerkin fast spectral (DGFS) method has been recently introduced for solving the full Boltzmann equation with general collision kernels, including the variable hard/soft sphere models—necessary for simulating flows involving diffusive transport. In this work, the deterministic DGFS method, Bhatnagar-Gross-Krook (BGK), Ellipsoidal statistical BGK (ESBGK), and Shakhov kinetic models, and the widely used stochastic DSMC method, are utilized to assess the thermostress convection process in micro in-plane Knudsen radiometric actuator—a microscale compact low-power pressure sensor utilizing the Knudsen forces. The BGK model underpredicts the heat-flux, shear-stress, and flow speed; the S-model overpredicts; whereas, ESBGK comes close to the DSMC results. On the other hand, both the statistical/DSMC and deterministic/DGFS methods, segregated in perspectives, yet, yield inextricable results, bespeaking the ingenuity of Graeme Bird who laid down the foundation of practical rarefied gas dynamics for microsystems." @default.
- W3102671818 created "2020-11-23" @default.
- W3102671818 creator A5011739402 @default.
- W3102671818 creator A5019581016 @default.
- W3102671818 creator A5049433073 @default.
- W3102671818 creator A5052686265 @default.
- W3102671818 creator A5057568024 @default.
- W3102671818 creator A5065495877 @default.
- W3102671818 date "2019-08-01" @default.
- W3102671818 modified "2023-10-16" @default.
- W3102671818 title "Quantification of thermally-driven flows in microsystems using Boltzmann equation in deterministic and stochastic contexts" @default.
- W3102671818 cites W1554606661 @default.
- W3102671818 cites W1964359487 @default.
- W3102671818 cites W1966036003 @default.
- W3102671818 cites W1977115007 @default.
- W3102671818 cites W1986033790 @default.
- W3102671818 cites W1987121721 @default.
- W3102671818 cites W1997548071 @default.
- W3102671818 cites W2008003005 @default.
- W3102671818 cites W2008114991 @default.
- W3102671818 cites W2012336297 @default.
- W3102671818 cites W2015957939 @default.
- W3102671818 cites W2016107781 @default.
- W3102671818 cites W2017206564 @default.
- W3102671818 cites W2017285491 @default.
- W3102671818 cites W2017629263 @default.
- W3102671818 cites W2019969350 @default.
- W3102671818 cites W2020733228 @default.
- W3102671818 cites W2026105741 @default.
- W3102671818 cites W2026676269 @default.
- W3102671818 cites W2028108483 @default.
- W3102671818 cites W2031994681 @default.
- W3102671818 cites W2036699060 @default.
- W3102671818 cites W2038107889 @default.
- W3102671818 cites W2042624429 @default.
- W3102671818 cites W2047404651 @default.
- W3102671818 cites W2050936917 @default.
- W3102671818 cites W2054649493 @default.
- W3102671818 cites W2056652031 @default.
- W3102671818 cites W2061399530 @default.
- W3102671818 cites W2066060292 @default.
- W3102671818 cites W2071859253 @default.
- W3102671818 cites W2072551415 @default.
- W3102671818 cites W2072768377 @default.
- W3102671818 cites W2078498923 @default.
- W3102671818 cites W2080735958 @default.
- W3102671818 cites W2083597099 @default.
- W3102671818 cites W2084271777 @default.
- W3102671818 cites W2085059771 @default.
- W3102671818 cites W2085326767 @default.
- W3102671818 cites W2086031754 @default.
- W3102671818 cites W2100201447 @default.
- W3102671818 cites W2102271169 @default.
- W3102671818 cites W2106737203 @default.
- W3102671818 cites W2110681672 @default.
- W3102671818 cites W2115534214 @default.
- W3102671818 cites W2123410656 @default.
- W3102671818 cites W2131802406 @default.
- W3102671818 cites W2131947874 @default.
- W3102671818 cites W2143113068 @default.
- W3102671818 cites W2335653455 @default.
- W3102671818 cites W2340167042 @default.
- W3102671818 cites W2514483638 @default.
- W3102671818 cites W2555511960 @default.
- W3102671818 cites W2587316721 @default.
- W3102671818 cites W2596867176 @default.
- W3102671818 cites W2711957836 @default.
- W3102671818 cites W2807715531 @default.
- W3102671818 cites W2893649682 @default.
- W3102671818 cites W2895386156 @default.
- W3102671818 cites W2901448686 @default.
- W3102671818 cites W2905309424 @default.
- W3102671818 cites W2920539555 @default.
- W3102671818 cites W2921145624 @default.
- W3102671818 cites W2963446664 @default.
- W3102671818 cites W4236974991 @default.
- W3102671818 cites W4242205892 @default.
- W3102671818 cites W4251706365 @default.
- W3102671818 doi "https://doi.org/10.1063/1.5108665" @default.
- W3102671818 hasPublicationYear "2019" @default.
- W3102671818 type Work @default.
- W3102671818 sameAs 3102671818 @default.
- W3102671818 citedByCount "9" @default.
- W3102671818 countsByYear W31026718182019 @default.
- W3102671818 countsByYear W31026718182020 @default.
- W3102671818 countsByYear W31026718182021 @default.
- W3102671818 countsByYear W31026718182022 @default.
- W3102671818 countsByYear W31026718182023 @default.
- W3102671818 crossrefType "journal-article" @default.
- W3102671818 hasAuthorship W3102671818A5011739402 @default.
- W3102671818 hasAuthorship W3102671818A5019581016 @default.
- W3102671818 hasAuthorship W3102671818A5049433073 @default.
- W3102671818 hasAuthorship W3102671818A5052686265 @default.
- W3102671818 hasAuthorship W3102671818A5057568024 @default.
- W3102671818 hasAuthorship W3102671818A5065495877 @default.
- W3102671818 hasBestOaLocation W31026718181 @default.
- W3102671818 hasConcept C105795698 @default.
- W3102671818 hasConcept C121332964 @default.
- W3102671818 hasConcept C121838276 @default.
- W3102671818 hasConcept C121864883 @default.