Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102680147> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3102680147 endingPage "045301" @default.
- W3102680147 startingPage "045301" @default.
- W3102680147 abstract "In this article we present the algebraic rearrangement, or matrix inversion of the Dirac equation in a curved Riemann-Cartan spacetime with torsion, the presence of non-vanishing torsion is implied by the intrinsic spin-1/2 of the Dirac field. We then demonstrate how the inversion leads to a reformulation of the fully non-linear and self-interactive Einstein-Cartan-Dirac field equations in terms of Dirac bilinears. It has been known for some decades that the Dirac equation for charged fermions interacting with an electromagnetic field can be algebraically inverted, so as to obtain an explicit rational expression of the four-vector potential of the gauge field in terms of the spinors. Substitution of this expression into Maxwell's equations yields the bilinear form of the self-interactive Maxwell-Dirac equations. In the present (purely gravitational) case, the inversion process yields emph{two} rational four-vector expressions in terms of Dirac bilinears, which act as gravitational analogues of the electromagnetic vector potential. These potentials also appear as irreducible summand components of the connection, along with a traceless residual term of mixed symmetry. When taking the torsion field equation into account, the residual term can be written as a function of the object of anholonomity. Using the local tetrad frame associated with observers co-moving with the Dirac matter, a generic vierbein frame can described in terms of four Dirac bilinear vector fields, normalized by a scalar and pseudoscalar field. A corollary of this is that in regions where the Dirac field is non-vanishing, the self-coupled Einstein-Cartan-Dirac equations can in principle be expressed in terms of Dirac bilinears only." @default.
- W3102680147 created "2020-11-23" @default.
- W3102680147 creator A5031860965 @default.
- W3102680147 creator A5047303445 @default.
- W3102680147 date "2019-01-07" @default.
- W3102680147 modified "2023-09-27" @default.
- W3102680147 title "The self-coupled Einstein–Cartan–Dirac equations in terms of Dirac bilinears" @default.
- W3102680147 cites W1487243811 @default.
- W3102680147 cites W1552539863 @default.
- W3102680147 cites W1981152586 @default.
- W3102680147 cites W1995832404 @default.
- W3102680147 cites W1995838708 @default.
- W3102680147 cites W2000109703 @default.
- W3102680147 cites W2000536395 @default.
- W3102680147 cites W2001582136 @default.
- W3102680147 cites W2007959513 @default.
- W3102680147 cites W2028629864 @default.
- W3102680147 cites W2033141401 @default.
- W3102680147 cites W2060958386 @default.
- W3102680147 cites W2070721074 @default.
- W3102680147 cites W2080661571 @default.
- W3102680147 cites W2094839458 @default.
- W3102680147 cites W2157049708 @default.
- W3102680147 cites W2215324427 @default.
- W3102680147 cites W2323568727 @default.
- W3102680147 cites W2500850694 @default.
- W3102680147 cites W3099089205 @default.
- W3102680147 cites W3102710615 @default.
- W3102680147 cites W3106012019 @default.
- W3102680147 cites W3150148361 @default.
- W3102680147 cites W4298680854 @default.
- W3102680147 cites W77993500 @default.
- W3102680147 doi "https://doi.org/10.1088/1751-8121/aaf4e0" @default.
- W3102680147 hasPublicationYear "2019" @default.
- W3102680147 type Work @default.
- W3102680147 sameAs 3102680147 @default.
- W3102680147 citedByCount "4" @default.
- W3102680147 countsByYear W31026801472019 @default.
- W3102680147 countsByYear W31026801472021 @default.
- W3102680147 countsByYear W31026801472022 @default.
- W3102680147 countsByYear W31026801472023 @default.
- W3102680147 crossrefType "journal-article" @default.
- W3102680147 hasAuthorship W3102680147A5031860965 @default.
- W3102680147 hasAuthorship W3102680147A5047303445 @default.
- W3102680147 hasBestOaLocation W31026801472 @default.
- W3102680147 hasConcept C121332964 @default.
- W3102680147 hasConcept C149545384 @default.
- W3102680147 hasConcept C156785651 @default.
- W3102680147 hasConcept C181830111 @default.
- W3102680147 hasConcept C200161520 @default.
- W3102680147 hasConcept C37914503 @default.
- W3102680147 hasConcept C52233224 @default.
- W3102680147 hasConcept C62520636 @default.
- W3102680147 hasConcept C65211518 @default.
- W3102680147 hasConcept C79955541 @default.
- W3102680147 hasConcept C81174988 @default.
- W3102680147 hasConcept C82601208 @default.
- W3102680147 hasConceptScore W3102680147C121332964 @default.
- W3102680147 hasConceptScore W3102680147C149545384 @default.
- W3102680147 hasConceptScore W3102680147C156785651 @default.
- W3102680147 hasConceptScore W3102680147C181830111 @default.
- W3102680147 hasConceptScore W3102680147C200161520 @default.
- W3102680147 hasConceptScore W3102680147C37914503 @default.
- W3102680147 hasConceptScore W3102680147C52233224 @default.
- W3102680147 hasConceptScore W3102680147C62520636 @default.
- W3102680147 hasConceptScore W3102680147C65211518 @default.
- W3102680147 hasConceptScore W3102680147C79955541 @default.
- W3102680147 hasConceptScore W3102680147C81174988 @default.
- W3102680147 hasConceptScore W3102680147C82601208 @default.
- W3102680147 hasIssue "4" @default.
- W3102680147 hasLocation W31026801471 @default.
- W3102680147 hasLocation W31026801472 @default.
- W3102680147 hasLocation W31026801473 @default.
- W3102680147 hasLocation W31026801474 @default.
- W3102680147 hasLocation W31026801475 @default.
- W3102680147 hasOpenAccess W3102680147 @default.
- W3102680147 hasPrimaryLocation W31026801471 @default.
- W3102680147 hasRelatedWork W1963657562 @default.
- W3102680147 hasRelatedWork W1978826042 @default.
- W3102680147 hasRelatedWork W1979928727 @default.
- W3102680147 hasRelatedWork W1994110312 @default.
- W3102680147 hasRelatedWork W2018699948 @default.
- W3102680147 hasRelatedWork W2121079886 @default.
- W3102680147 hasRelatedWork W2124501049 @default.
- W3102680147 hasRelatedWork W2132512275 @default.
- W3102680147 hasRelatedWork W2963626027 @default.
- W3102680147 hasRelatedWork W4319316271 @default.
- W3102680147 hasVolume "52" @default.
- W3102680147 isParatext "false" @default.
- W3102680147 isRetracted "false" @default.
- W3102680147 magId "3102680147" @default.
- W3102680147 workType "article" @default.