Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102693457> ?p ?o ?g. }
- W3102693457 endingPage "17" @default.
- W3102693457 startingPage "1" @default.
- W3102693457 abstract "Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims. Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods. The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results. The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very efficiently with the number of processors up to tens of thousands of CPU cores. This excellent scalability of the code was obtained by simulating the 3D evolution of the solar corona above an active region (NOAA AR1249) for which GOEMHD3 revealed the energy distribution in the solar atmosphere in response to the energy influx from the chromosphere through the transition region, taking into account the weak Joule current dissipation and viscosity in the almost dissipationless solar corona.Conclusions. The new massively parallel simulation code GOEMHD3 enables efficient and fast simulations of almost ideal astrophysical plasma flows with large Reynolds numbers well resolved and on huge grids covering large domains. Its abilities are verified by comprehensive set of tests of ideal and weakly dissipative plasma phenomena. The high-resolution (20483 grid points) simulation of a large part of the solar corona above an observed active region proves the excellent parallel scalability of the code up to more than 30 000 processor cores." @default.
- W3102693457 created "2020-11-23" @default.
- W3102693457 creator A5030223736 @default.
- W3102693457 creator A5073094979 @default.
- W3102693457 creator A5086337817 @default.
- W3102693457 creator A5087855826 @default.
- W3102693457 date "2015-08-01" @default.
- W3102693457 modified "2023-09-23" @default.
- W3102693457 title "The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers Code description, verification, and computational performance" @default.
- W3102693457 cites W1505036956 @default.
- W3102693457 cites W1510820478 @default.
- W3102693457 cites W1520318636 @default.
- W3102693457 cites W1538613352 @default.
- W3102693457 cites W1635437956 @default.
- W3102693457 cites W1881261820 @default.
- W3102693457 cites W1964999699 @default.
- W3102693457 cites W1981529096 @default.
- W3102693457 cites W1985054974 @default.
- W3102693457 cites W1990221160 @default.
- W3102693457 cites W1991781096 @default.
- W3102693457 cites W2013249126 @default.
- W3102693457 cites W2040469410 @default.
- W3102693457 cites W2042744005 @default.
- W3102693457 cites W2048078447 @default.
- W3102693457 cites W2054778983 @default.
- W3102693457 cites W2058995019 @default.
- W3102693457 cites W2063900474 @default.
- W3102693457 cites W2069467133 @default.
- W3102693457 cites W2070744668 @default.
- W3102693457 cites W2071743932 @default.
- W3102693457 cites W2073945818 @default.
- W3102693457 cites W2075023254 @default.
- W3102693457 cites W2088965250 @default.
- W3102693457 cites W2091582690 @default.
- W3102693457 cites W2107868963 @default.
- W3102693457 cites W2108433712 @default.
- W3102693457 cites W2116091257 @default.
- W3102693457 cites W2126179413 @default.
- W3102693457 cites W2128211901 @default.
- W3102693457 cites W2135202454 @default.
- W3102693457 cites W2142063750 @default.
- W3102693457 cites W2164865813 @default.
- W3102693457 cites W2168160927 @default.
- W3102693457 cites W2466218146 @default.
- W3102693457 cites W3098142913 @default.
- W3102693457 cites W3102329833 @default.
- W3102693457 cites W3105897953 @default.
- W3102693457 hasPublicationYear "2015" @default.
- W3102693457 type Work @default.
- W3102693457 sameAs 3102693457 @default.
- W3102693457 citedByCount "4" @default.
- W3102693457 countsByYear W31026934572017 @default.
- W3102693457 countsByYear W31026934572018 @default.
- W3102693457 crossrefType "journal-article" @default.
- W3102693457 hasAuthorship W3102693457A5030223736 @default.
- W3102693457 hasAuthorship W3102693457A5073094979 @default.
- W3102693457 hasAuthorship W3102693457A5086337817 @default.
- W3102693457 hasAuthorship W3102693457A5087855826 @default.
- W3102693457 hasBestOaLocation W31026934571 @default.
- W3102693457 hasConcept C121332964 @default.
- W3102693457 hasConcept C121864883 @default.
- W3102693457 hasConcept C134306372 @default.
- W3102693457 hasConcept C151730666 @default.
- W3102693457 hasConcept C182748727 @default.
- W3102693457 hasConcept C196558001 @default.
- W3102693457 hasConcept C2779343474 @default.
- W3102693457 hasConcept C28826006 @default.
- W3102693457 hasConcept C31532427 @default.
- W3102693457 hasConcept C33923547 @default.
- W3102693457 hasConcept C41008148 @default.
- W3102693457 hasConcept C459310 @default.
- W3102693457 hasConcept C57879066 @default.
- W3102693457 hasConcept C62520636 @default.
- W3102693457 hasConcept C73000952 @default.
- W3102693457 hasConcept C74650414 @default.
- W3102693457 hasConcept C82706917 @default.
- W3102693457 hasConcept C86803240 @default.
- W3102693457 hasConcept C99692599 @default.
- W3102693457 hasConceptScore W3102693457C121332964 @default.
- W3102693457 hasConceptScore W3102693457C121864883 @default.
- W3102693457 hasConceptScore W3102693457C134306372 @default.
- W3102693457 hasConceptScore W3102693457C151730666 @default.
- W3102693457 hasConceptScore W3102693457C182748727 @default.
- W3102693457 hasConceptScore W3102693457C196558001 @default.
- W3102693457 hasConceptScore W3102693457C2779343474 @default.
- W3102693457 hasConceptScore W3102693457C28826006 @default.
- W3102693457 hasConceptScore W3102693457C31532427 @default.
- W3102693457 hasConceptScore W3102693457C33923547 @default.
- W3102693457 hasConceptScore W3102693457C41008148 @default.
- W3102693457 hasConceptScore W3102693457C459310 @default.
- W3102693457 hasConceptScore W3102693457C57879066 @default.
- W3102693457 hasConceptScore W3102693457C62520636 @default.
- W3102693457 hasConceptScore W3102693457C73000952 @default.
- W3102693457 hasConceptScore W3102693457C74650414 @default.
- W3102693457 hasConceptScore W3102693457C82706917 @default.
- W3102693457 hasConceptScore W3102693457C86803240 @default.
- W3102693457 hasConceptScore W3102693457C99692599 @default.
- W3102693457 hasLocation W31026934571 @default.