Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102700897> ?p ?o ?g. }
- W3102700897 endingPage "054" @default.
- W3102700897 startingPage "054" @default.
- W3102700897 abstract "We consider the freeze-in production of 7 keV axino dark matter (DM) in the supersymmetric Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model in light of the 3.5 keV line excess. The warmness of such 7 keV DM produced from the thermal bath, in general, appears in tension with Ly-α forest data, although a direct comparison is not straightforward. This is because the Ly-α forest constraints are usually reported on the mass of the conventional warm dark matter (WDM), where large entropy production is implicitly assumed to occur in the thermal bath after WDM particles are decoupled. The phase space distribution of freeze-in axino DM varies depending on production processes and axino DM may alleviate the tension with the tight Ly-α forest constraints. By solving the Boltzmann equation, we first obtain the resultant phase space distribution of axinos produced by 2-body decay, 3-body decay, and 2-to-2 scattering respectively. The reduced collision term and resultant phase space distribution are useful for studying other freeze-in scenarios as well. We then calculate the resultant linear matter power spectra for such axino DM and directly compare them with the linear matter power spectra for the conventional WDM . In order to demonstrate realistic axino DM production, we consider benchmark points with Higgsino next-to-light supersymmetric particle (NLSP) and wino NLSP. In the case of Higgsino NLSP, the phase space distribution of axinos is colder than that in the conventional WDM case, so the most stringent Ly-α forest constraint can be evaded with mild entropy production from saxion decay inherent in the supersymmetric DFSZ axion model." @default.
- W3102700897 created "2020-11-23" @default.
- W3102700897 creator A5001447023 @default.
- W3102700897 creator A5004618434 @default.
- W3102700897 creator A5048228893 @default.
- W3102700897 creator A5086772763 @default.
- W3102700897 date "2018-01-31" @default.
- W3102700897 modified "2023-10-03" @default.
- W3102700897 title "Light axinos from freeze-in: production processes, phase space distributions, and Ly-α forest constraints" @default.
- W3102700897 cites W1636349672 @default.
- W3102700897 cites W1859434086 @default.
- W3102700897 cites W1944901286 @default.
- W3102700897 cites W1982379873 @default.
- W3102700897 cites W1996418221 @default.
- W3102700897 cites W1999384816 @default.
- W3102700897 cites W2000000424 @default.
- W3102700897 cites W2001496497 @default.
- W3102700897 cites W2020266225 @default.
- W3102700897 cites W2021641931 @default.
- W3102700897 cites W2025505979 @default.
- W3102700897 cites W2027285786 @default.
- W3102700897 cites W2033081574 @default.
- W3102700897 cites W2036021094 @default.
- W3102700897 cites W2036634861 @default.
- W3102700897 cites W2037540720 @default.
- W3102700897 cites W2041082840 @default.
- W3102700897 cites W2041895108 @default.
- W3102700897 cites W2043935734 @default.
- W3102700897 cites W2045286415 @default.
- W3102700897 cites W2045884684 @default.
- W3102700897 cites W2046151029 @default.
- W3102700897 cites W2058808507 @default.
- W3102700897 cites W2061044423 @default.
- W3102700897 cites W2062919135 @default.
- W3102700897 cites W2064311907 @default.
- W3102700897 cites W2064336450 @default.
- W3102700897 cites W2071386803 @default.
- W3102700897 cites W2075510477 @default.
- W3102700897 cites W2079753868 @default.
- W3102700897 cites W2082488375 @default.
- W3102700897 cites W2089745939 @default.
- W3102700897 cites W2090314870 @default.
- W3102700897 cites W2092375032 @default.
- W3102700897 cites W2095815431 @default.
- W3102700897 cites W2105115054 @default.
- W3102700897 cites W2111796778 @default.
- W3102700897 cites W2113426399 @default.
- W3102700897 cites W2119532340 @default.
- W3102700897 cites W2125373937 @default.
- W3102700897 cites W2130001070 @default.
- W3102700897 cites W2130038292 @default.
- W3102700897 cites W2138874905 @default.
- W3102700897 cites W2142712327 @default.
- W3102700897 cites W2143570837 @default.
- W3102700897 cites W2144624554 @default.
- W3102700897 cites W2150480596 @default.
- W3102700897 cites W2151344183 @default.
- W3102700897 cites W2155976193 @default.
- W3102700897 cites W2159143899 @default.
- W3102700897 cites W2164089543 @default.
- W3102700897 cites W2195116632 @default.
- W3102700897 cites W2202053446 @default.
- W3102700897 cites W2205888907 @default.
- W3102700897 cites W2341044313 @default.
- W3102700897 cites W2479835689 @default.
- W3102700897 cites W2594055979 @default.
- W3102700897 cites W2625294702 @default.
- W3102700897 cites W2731442368 @default.
- W3102700897 cites W2962863098 @default.
- W3102700897 cites W2962938447 @default.
- W3102700897 cites W2963902861 @default.
- W3102700897 cites W3004288312 @default.
- W3102700897 cites W3037381770 @default.
- W3102700897 cites W3098159873 @default.
- W3102700897 cites W3098449542 @default.
- W3102700897 cites W3099119831 @default.
- W3102700897 cites W3099415916 @default.
- W3102700897 cites W3099423326 @default.
- W3102700897 cites W3099777948 @default.
- W3102700897 cites W3100646617 @default.
- W3102700897 cites W3101014928 @default.
- W3102700897 cites W3101046204 @default.
- W3102700897 cites W3101956431 @default.
- W3102700897 cites W3101960699 @default.
- W3102700897 cites W3102132801 @default.
- W3102700897 cites W3102903895 @default.
- W3102700897 cites W3102908304 @default.
- W3102700897 cites W3103727527 @default.
- W3102700897 cites W3103964357 @default.
- W3102700897 cites W3104243603 @default.
- W3102700897 cites W3104438093 @default.
- W3102700897 cites W3104538039 @default.
- W3102700897 cites W3106205378 @default.
- W3102700897 cites W3122927131 @default.
- W3102700897 cites W4255991414 @default.
- W3102700897 cites W4292875581 @default.
- W3102700897 doi "https://doi.org/10.1088/1475-7516/2018/01/054" @default.
- W3102700897 hasPublicationYear "2018" @default.