Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102711066> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3102711066 abstract "To deal with the lack of prediction and management for vehicular network slice in existing research, this paper designs a machine learning based resource allocation strategy for vehicular network slicing. Firstly, a traffic prediction mechanism based on Convolutional Long Short-Term Memory (ConvLSTM) is proposed, which will capture the spatial-temporal dependencies of the traffic to predict traffic of complex slice services in the vehicular networks. Secondly, considering the imbalance of wireless resource utilization caused by the space-time difference between application scenarios, a shared proportional fairness scheme is proposed to achieve efficient and differentiated utilization of wireless resources. Finally, on the basis of ensuring the demand of each slice, the resource allocation algorithm based on the primal-dual interior-point method is used to solve the optimal slice weight allocation to minimize the system delay. Simulation results show that the service traffic prediction mechanism can be used to predict service traffic in the future. The average error rates of SMS, phone, and web traffic will be reduced, so that the user load distribution can be obtained a priori. Based on the predicted load distribution, slice weight distribution is performed in advance so that arranging delay is saved. The resource allocation algorithm based on the primal-dual interior-point method can well calculate the optimal slice weight distribution at this time." @default.
- W3102711066 created "2020-11-23" @default.
- W3102711066 creator A5031886715 @default.
- W3102711066 creator A5051618428 @default.
- W3102711066 creator A5061695845 @default.
- W3102711066 creator A5074543050 @default.
- W3102711066 date "2020-08-09" @default.
- W3102711066 modified "2023-10-18" @default.
- W3102711066 title "Machine Learning based Resource Allocation Strategy for Network Slicing in Vehicular Networks" @default.
- W3102711066 cites W1901616594 @default.
- W3102711066 cites W1991898587 @default.
- W3102711066 cites W2017807084 @default.
- W3102711066 cites W2042308583 @default.
- W3102711066 cites W2052024782 @default.
- W3102711066 cites W2117829824 @default.
- W3102711066 cites W2190432600 @default.
- W3102711066 cites W2337472511 @default.
- W3102711066 cites W236026115 @default.
- W3102711066 cites W2558600380 @default.
- W3102711066 cites W2601810865 @default.
- W3102711066 cites W2612472936 @default.
- W3102711066 cites W2762605243 @default.
- W3102711066 cites W2807536558 @default.
- W3102711066 cites W2894954515 @default.
- W3102711066 cites W4250589301 @default.
- W3102711066 doi "https://doi.org/10.1109/iccc49849.2020.9238991" @default.
- W3102711066 hasPublicationYear "2020" @default.
- W3102711066 type Work @default.
- W3102711066 sameAs 3102711066 @default.
- W3102711066 citedByCount "11" @default.
- W3102711066 countsByYear W31027110662021 @default.
- W3102711066 countsByYear W31027110662022 @default.
- W3102711066 countsByYear W31027110662023 @default.
- W3102711066 crossrefType "proceedings-article" @default.
- W3102711066 hasAuthorship W3102711066A5031886715 @default.
- W3102711066 hasAuthorship W3102711066A5051618428 @default.
- W3102711066 hasAuthorship W3102711066A5061695845 @default.
- W3102711066 hasAuthorship W3102711066A5074543050 @default.
- W3102711066 hasBestOaLocation W31027110662 @default.
- W3102711066 hasConcept C108037233 @default.
- W3102711066 hasConcept C120314980 @default.
- W3102711066 hasConcept C124952713 @default.
- W3102711066 hasConcept C136764020 @default.
- W3102711066 hasConcept C142362112 @default.
- W3102711066 hasConcept C2776190703 @default.
- W3102711066 hasConcept C2780609101 @default.
- W3102711066 hasConcept C2780980858 @default.
- W3102711066 hasConcept C29202148 @default.
- W3102711066 hasConcept C31258907 @default.
- W3102711066 hasConcept C41008148 @default.
- W3102711066 hasConcept C5119721 @default.
- W3102711066 hasConcept C555944384 @default.
- W3102711066 hasConcept C76155785 @default.
- W3102711066 hasConcept C79403827 @default.
- W3102711066 hasConceptScore W3102711066C108037233 @default.
- W3102711066 hasConceptScore W3102711066C120314980 @default.
- W3102711066 hasConceptScore W3102711066C124952713 @default.
- W3102711066 hasConceptScore W3102711066C136764020 @default.
- W3102711066 hasConceptScore W3102711066C142362112 @default.
- W3102711066 hasConceptScore W3102711066C2776190703 @default.
- W3102711066 hasConceptScore W3102711066C2780609101 @default.
- W3102711066 hasConceptScore W3102711066C2780980858 @default.
- W3102711066 hasConceptScore W3102711066C29202148 @default.
- W3102711066 hasConceptScore W3102711066C31258907 @default.
- W3102711066 hasConceptScore W3102711066C41008148 @default.
- W3102711066 hasConceptScore W3102711066C5119721 @default.
- W3102711066 hasConceptScore W3102711066C555944384 @default.
- W3102711066 hasConceptScore W3102711066C76155785 @default.
- W3102711066 hasConceptScore W3102711066C79403827 @default.
- W3102711066 hasFunder F4320321001 @default.
- W3102711066 hasLocation W31027110661 @default.
- W3102711066 hasLocation W31027110662 @default.
- W3102711066 hasOpenAccess W3102711066 @default.
- W3102711066 hasPrimaryLocation W31027110661 @default.
- W3102711066 hasRelatedWork W1589966275 @default.
- W3102711066 hasRelatedWork W1939996075 @default.
- W3102711066 hasRelatedWork W206598027 @default.
- W3102711066 hasRelatedWork W2118113972 @default.
- W3102711066 hasRelatedWork W2181493188 @default.
- W3102711066 hasRelatedWork W2392730411 @default.
- W3102711066 hasRelatedWork W2923452570 @default.
- W3102711066 hasRelatedWork W2978610750 @default.
- W3102711066 hasRelatedWork W3181553685 @default.
- W3102711066 hasRelatedWork W86175780 @default.
- W3102711066 isParatext "false" @default.
- W3102711066 isRetracted "false" @default.
- W3102711066 magId "3102711066" @default.
- W3102711066 workType "article" @default.