Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102734610> ?p ?o ?g. }
- W3102734610 endingPage "204950" @default.
- W3102734610 startingPage "204941" @default.
- W3102734610 abstract "Optical coherence tomography (OCT) is a noninvasive, high resolution, and real-time imaging technology that has been used in ophthalmology and other medical fields. Limited by the point spread function of OCT system, it is difficult to optimize its spatial resolution only based on hardware. Digital image processing methods, especially deep learning, provide great potential in super-resolving images. In this paper, the matched axial low resolution (LR) and high resolution OCT image pairs from actual OCT imaging are collected to generate the dataset by our home-made spectral domain OCT (SD-OCT) system. Several methods are selected to super-resolve LR OCT images. It is shown from the experimental results that the residual-in-residual dense block network (RRDBNet) trained with different loss functions performs the best super-resolution for OCT images, and it is demonstrated from the preliminary results that deep learning methods have good generalization and robustness between OCT systems. We believe deep learning methods have broad prospects in improving the quality of OCT images." @default.
- W3102734610 created "2020-11-23" @default.
- W3102734610 creator A5071491717 @default.
- W3102734610 creator A5072916712 @default.
- W3102734610 creator A5089382998 @default.
- W3102734610 creator A5090455356 @default.
- W3102734610 date "2020-01-01" @default.
- W3102734610 modified "2023-10-12" @default.
- W3102734610 title "Axial Super-Resolution Study for Optical Coherence Tomography Images Via Deep Learning" @default.
- W3102734610 cites W1580389772 @default.
- W3102734610 cites W1766436225 @default.
- W3102734610 cites W1970140118 @default.
- W3102734610 cites W1987382181 @default.
- W3102734610 cites W2006918470 @default.
- W3102734610 cites W2027606067 @default.
- W3102734610 cites W2033082557 @default.
- W3102734610 cites W2083457899 @default.
- W3102734610 cites W2194775991 @default.
- W3102734610 cites W2228770073 @default.
- W3102734610 cites W2284093188 @default.
- W3102734610 cites W2305112631 @default.
- W3102734610 cites W2418070565 @default.
- W3102734610 cites W2432643382 @default.
- W3102734610 cites W2523513766 @default.
- W3102734610 cites W2709402577 @default.
- W3102734610 cites W2765469831 @default.
- W3102734610 cites W2767378450 @default.
- W3102734610 cites W2790810526 @default.
- W3102734610 cites W2791702886 @default.
- W3102734610 cites W2794977498 @default.
- W3102734610 cites W2901310501 @default.
- W3102734610 cites W2912516214 @default.
- W3102734610 cites W2919046835 @default.
- W3102734610 cites W2936120730 @default.
- W3102734610 cites W2937484554 @default.
- W3102734610 cites W2947156405 @default.
- W3102734610 cites W2963470893 @default.
- W3102734610 cites W2963620158 @default.
- W3102734610 cites W2964046397 @default.
- W3102734610 cites W2964101377 @default.
- W3102734610 cites W2965401993 @default.
- W3102734610 cites W2997847242 @default.
- W3102734610 cites W3003706555 @default.
- W3102734610 cites W3013529009 @default.
- W3102734610 cites W3014231739 @default.
- W3102734610 cites W3084306646 @default.
- W3102734610 cites W3106295246 @default.
- W3102734610 cites W4297678441 @default.
- W3102734610 cites W54257720 @default.
- W3102734610 doi "https://doi.org/10.1109/access.2020.3036837" @default.
- W3102734610 hasPublicationYear "2020" @default.
- W3102734610 type Work @default.
- W3102734610 sameAs 3102734610 @default.
- W3102734610 citedByCount "10" @default.
- W3102734610 countsByYear W31027346102021 @default.
- W3102734610 countsByYear W31027346102022 @default.
- W3102734610 countsByYear W31027346102023 @default.
- W3102734610 crossrefType "journal-article" @default.
- W3102734610 hasAuthorship W3102734610A5071491717 @default.
- W3102734610 hasAuthorship W3102734610A5072916712 @default.
- W3102734610 hasAuthorship W3102734610A5089382998 @default.
- W3102734610 hasAuthorship W3102734610A5090455356 @default.
- W3102734610 hasBestOaLocation W31027346101 @default.
- W3102734610 hasConcept C120665830 @default.
- W3102734610 hasConcept C121332964 @default.
- W3102734610 hasConcept C138268822 @default.
- W3102734610 hasConcept C154945302 @default.
- W3102734610 hasConcept C163716698 @default.
- W3102734610 hasConcept C205372480 @default.
- W3102734610 hasConcept C2777413408 @default.
- W3102734610 hasConcept C2778818243 @default.
- W3102734610 hasConcept C2781181686 @default.
- W3102734610 hasConcept C31972630 @default.
- W3102734610 hasConcept C41008148 @default.
- W3102734610 hasConcept C62520636 @default.
- W3102734610 hasConcept C92630104 @default.
- W3102734610 hasConceptScore W3102734610C120665830 @default.
- W3102734610 hasConceptScore W3102734610C121332964 @default.
- W3102734610 hasConceptScore W3102734610C138268822 @default.
- W3102734610 hasConceptScore W3102734610C154945302 @default.
- W3102734610 hasConceptScore W3102734610C163716698 @default.
- W3102734610 hasConceptScore W3102734610C205372480 @default.
- W3102734610 hasConceptScore W3102734610C2777413408 @default.
- W3102734610 hasConceptScore W3102734610C2778818243 @default.
- W3102734610 hasConceptScore W3102734610C2781181686 @default.
- W3102734610 hasConceptScore W3102734610C31972630 @default.
- W3102734610 hasConceptScore W3102734610C41008148 @default.
- W3102734610 hasConceptScore W3102734610C62520636 @default.
- W3102734610 hasConceptScore W3102734610C92630104 @default.
- W3102734610 hasFunder F4320321001 @default.
- W3102734610 hasLocation W31027346101 @default.
- W3102734610 hasOpenAccess W3102734610 @default.
- W3102734610 hasPrimaryLocation W31027346101 @default.
- W3102734610 hasRelatedWork W1533284778 @default.
- W3102734610 hasRelatedWork W1991295273 @default.
- W3102734610 hasRelatedWork W2031297954 @default.
- W3102734610 hasRelatedWork W2033082557 @default.
- W3102734610 hasRelatedWork W2069317917 @default.