Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102785448> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3102785448 abstract "Recurrent neural networks (RNNs) have shown significant improvements in recent years for speech enhancement. However, the model complexity and inference time cost of RNNs are much higher than deep feed-forward neural networks (DNNs). Therefore, these limit the applications of speech enhancement. This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning. The TDNN has excellent potential for capturing long range temporal contexts, which utilizes a modular and incremental design. Besides, the TDNN preserves the feed-forward structure so that its inference cost is comparable to standard DNN. To make full use of the training data, we propose a full data learning method for speech enhancement. More specifically, we not only use the noisy-to-clean (input-to-target) to train the enhanced model, but also the clean-to-clean and noise-to-silence data. Therefore, all of the training data can be used to train the enhanced model. Our experiments are conducted on TIMIT dataset. Experimental results show that our proposed method could achieve a better performance than DNN and comparable even better performance than BLSTM. Meanwhile, compared with the BLSTM, the proposed method drastically reduce the inference time." @default.
- W3102785448 created "2020-11-23" @default.
- W3102785448 creator A5015229685 @default.
- W3102785448 creator A5037493212 @default.
- W3102785448 creator A5048826252 @default.
- W3102785448 creator A5071074705 @default.
- W3102785448 creator A5078130100 @default.
- W3102785448 creator A5078525423 @default.
- W3102785448 date "2020-11-11" @default.
- W3102785448 modified "2023-09-23" @default.
- W3102785448 title "Deep Time Delay Neural Network for Speech Enhancement with Full Data Learning" @default.
- W3102785448 cites W1606614440 @default.
- W3102785448 cites W1635512741 @default.
- W3102785448 cites W1897240248 @default.
- W3102785448 cites W1974387177 @default.
- W3102785448 cites W1992475611 @default.
- W3102785448 cites W1997449813 @default.
- W3102785448 cites W2044893557 @default.
- W3102785448 cites W2064675550 @default.
- W3102785448 cites W2067295501 @default.
- W3102785448 cites W2117671523 @default.
- W3102785448 cites W2119196219 @default.
- W3102785448 cites W2127851351 @default.
- W3102785448 cites W2131774270 @default.
- W3102785448 cites W2168379380 @default.
- W3102785448 cites W2402146185 @default.
- W3102785448 cites W2405774341 @default.
- W3102785448 cites W2889204165 @default.
- W3102785448 cites W2962866211 @default.
- W3102785448 cites W2963453742 @default.
- W3102785448 cites W2963458655 @default.
- W3102785448 cites W2973165826 @default.
- W3102785448 cites W3010851250 @default.
- W3102785448 cites W3095831308 @default.
- W3102785448 cites W3096816283 @default.
- W3102785448 doi "https://doi.org/10.48550/arxiv.2011.05591" @default.
- W3102785448 hasPublicationYear "2020" @default.
- W3102785448 type Work @default.
- W3102785448 sameAs 3102785448 @default.
- W3102785448 citedByCount "0" @default.
- W3102785448 crossrefType "posted-content" @default.
- W3102785448 hasAuthorship W3102785448A5015229685 @default.
- W3102785448 hasAuthorship W3102785448A5037493212 @default.
- W3102785448 hasAuthorship W3102785448A5048826252 @default.
- W3102785448 hasAuthorship W3102785448A5071074705 @default.
- W3102785448 hasAuthorship W3102785448A5078130100 @default.
- W3102785448 hasAuthorship W3102785448A5078525423 @default.
- W3102785448 hasBestOaLocation W31027854481 @default.
- W3102785448 hasConcept C108583219 @default.
- W3102785448 hasConcept C119857082 @default.
- W3102785448 hasConcept C147168706 @default.
- W3102785448 hasConcept C154945302 @default.
- W3102785448 hasConcept C163294075 @default.
- W3102785448 hasConcept C175202392 @default.
- W3102785448 hasConcept C23224414 @default.
- W3102785448 hasConcept C2776182073 @default.
- W3102785448 hasConcept C2776214188 @default.
- W3102785448 hasConcept C2778724510 @default.
- W3102785448 hasConcept C28490314 @default.
- W3102785448 hasConcept C41008148 @default.
- W3102785448 hasConcept C50644808 @default.
- W3102785448 hasConceptScore W3102785448C108583219 @default.
- W3102785448 hasConceptScore W3102785448C119857082 @default.
- W3102785448 hasConceptScore W3102785448C147168706 @default.
- W3102785448 hasConceptScore W3102785448C154945302 @default.
- W3102785448 hasConceptScore W3102785448C163294075 @default.
- W3102785448 hasConceptScore W3102785448C175202392 @default.
- W3102785448 hasConceptScore W3102785448C23224414 @default.
- W3102785448 hasConceptScore W3102785448C2776182073 @default.
- W3102785448 hasConceptScore W3102785448C2776214188 @default.
- W3102785448 hasConceptScore W3102785448C2778724510 @default.
- W3102785448 hasConceptScore W3102785448C28490314 @default.
- W3102785448 hasConceptScore W3102785448C41008148 @default.
- W3102785448 hasConceptScore W3102785448C50644808 @default.
- W3102785448 hasLocation W31027854481 @default.
- W3102785448 hasOpenAccess W3102785448 @default.
- W3102785448 hasPrimaryLocation W31027854481 @default.
- W3102785448 hasRelatedWork W2329734087 @default.
- W3102785448 hasRelatedWork W2338752163 @default.
- W3102785448 hasRelatedWork W2607071059 @default.
- W3102785448 hasRelatedWork W2793022090 @default.
- W3102785448 hasRelatedWork W2919358988 @default.
- W3102785448 hasRelatedWork W2947970328 @default.
- W3102785448 hasRelatedWork W2963058055 @default.
- W3102785448 hasRelatedWork W3102785448 @default.
- W3102785448 hasRelatedWork W4200442073 @default.
- W3102785448 hasRelatedWork W4244026860 @default.
- W3102785448 isParatext "false" @default.
- W3102785448 isRetracted "false" @default.
- W3102785448 magId "3102785448" @default.
- W3102785448 workType "article" @default.