Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102875249> ?p ?o ?g. }
- W3102875249 endingPage "2778" @default.
- W3102875249 startingPage "2768" @default.
- W3102875249 abstract "Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multilevel features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D." @default.
- W3102875249 created "2020-11-23" @default.
- W3102875249 creator A5016081925 @default.
- W3102875249 creator A5017262410 @default.
- W3102875249 creator A5027851405 @default.
- W3102875249 creator A5031202827 @default.
- W3102875249 creator A5032708386 @default.
- W3102875249 creator A5046543349 @default.
- W3102875249 creator A5064671323 @default.
- W3102875249 creator A5065374358 @default.
- W3102875249 creator A5088178652 @default.
- W3102875249 creator A5090692315 @default.
- W3102875249 date "2019-12-01" @default.
- W3102875249 modified "2023-10-16" @default.
- W3102875249 title "Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound" @default.
- W3102875249 cites W1677182931 @default.
- W3102875249 cites W1884191083 @default.
- W3102875249 cites W1903029394 @default.
- W3102875249 cites W1911215475 @default.
- W3102875249 cites W1966047305 @default.
- W3102875249 cites W1994539652 @default.
- W3102875249 cites W2007487688 @default.
- W3102875249 cites W2012255096 @default.
- W3102875249 cites W2040103703 @default.
- W3102875249 cites W2043589278 @default.
- W3102875249 cites W2052544070 @default.
- W3102875249 cites W2052620447 @default.
- W3102875249 cites W2055317045 @default.
- W3102875249 cites W2057775191 @default.
- W3102875249 cites W2069533927 @default.
- W3102875249 cites W2076063813 @default.
- W3102875249 cites W2106033751 @default.
- W3102875249 cites W2109292231 @default.
- W3102875249 cites W2119249988 @default.
- W3102875249 cites W2126763729 @default.
- W3102875249 cites W2134491911 @default.
- W3102875249 cites W2138451308 @default.
- W3102875249 cites W2145179397 @default.
- W3102875249 cites W2160537008 @default.
- W3102875249 cites W2163273992 @default.
- W3102875249 cites W2164051596 @default.
- W3102875249 cites W2167014760 @default.
- W3102875249 cites W2172011289 @default.
- W3102875249 cites W2280845481 @default.
- W3102875249 cites W2323200062 @default.
- W3102875249 cites W2327793514 @default.
- W3102875249 cites W2404925063 @default.
- W3102875249 cites W2412782625 @default.
- W3102875249 cites W2549139847 @default.
- W3102875249 cites W2565639579 @default.
- W3102875249 cites W2613041730 @default.
- W3102875249 cites W2623004594 @default.
- W3102875249 cites W2749075781 @default.
- W3102875249 cites W2751624155 @default.
- W3102875249 cites W2752782242 @default.
- W3102875249 cites W2768224069 @default.
- W3102875249 cites W2794350160 @default.
- W3102875249 cites W2806788401 @default.
- W3102875249 cites W2888066618 @default.
- W3102875249 cites W2890173316 @default.
- W3102875249 cites W2891511539 @default.
- W3102875249 cites W2895340641 @default.
- W3102875249 cites W2915543933 @default.
- W3102875249 cites W2962914239 @default.
- W3102875249 cites W845365781 @default.
- W3102875249 doi "https://doi.org/10.1109/tmi.2019.2913184" @default.
- W3102875249 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31021793" @default.
- W3102875249 hasPublicationYear "2019" @default.
- W3102875249 type Work @default.
- W3102875249 sameAs 3102875249 @default.
- W3102875249 citedByCount "120" @default.
- W3102875249 countsByYear W31028752492019 @default.
- W3102875249 countsByYear W31028752492020 @default.
- W3102875249 countsByYear W31028752492021 @default.
- W3102875249 countsByYear W31028752492022 @default.
- W3102875249 countsByYear W31028752492023 @default.
- W3102875249 crossrefType "journal-article" @default.
- W3102875249 hasAuthorship W3102875249A5016081925 @default.
- W3102875249 hasAuthorship W3102875249A5017262410 @default.
- W3102875249 hasAuthorship W3102875249A5027851405 @default.
- W3102875249 hasAuthorship W3102875249A5031202827 @default.
- W3102875249 hasAuthorship W3102875249A5032708386 @default.
- W3102875249 hasAuthorship W3102875249A5046543349 @default.
- W3102875249 hasAuthorship W3102875249A5064671323 @default.
- W3102875249 hasAuthorship W3102875249A5065374358 @default.
- W3102875249 hasAuthorship W3102875249A5088178652 @default.
- W3102875249 hasAuthorship W3102875249A5090692315 @default.
- W3102875249 hasBestOaLocation W31028752492 @default.
- W3102875249 hasConcept C108583219 @default.
- W3102875249 hasConcept C121608353 @default.
- W3102875249 hasConcept C124504099 @default.
- W3102875249 hasConcept C126322002 @default.
- W3102875249 hasConcept C153083717 @default.
- W3102875249 hasConcept C153180895 @default.
- W3102875249 hasConcept C154945302 @default.
- W3102875249 hasConcept C2776235491 @default.
- W3102875249 hasConcept C31972630 @default.
- W3102875249 hasConcept C41008148 @default.