Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102894800> ?p ?o ?g. }
- W3102894800 endingPage "5523" @default.
- W3102894800 startingPage "5510" @default.
- W3102894800 abstract "Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed as it is able to filter seeds (regional minima) to reduce over-segmentation. However, MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. Firstly, AMR can adaptively filter useless seeds while preserving meaningful ones. Secondly, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that AMR is useful for improving algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time. Source code is available at https://github.com/SUST-reynole/AMR." @default.
- W3102894800 created "2020-11-23" @default.
- W3102894800 creator A5010643037 @default.
- W3102894800 creator A5029335401 @default.
- W3102894800 creator A5030973483 @default.
- W3102894800 creator A5036558091 @default.
- W3102894800 creator A5065250332 @default.
- W3102894800 creator A5075570681 @default.
- W3102894800 date "2019-11-01" @default.
- W3102894800 modified "2023-10-17" @default.
- W3102894800 title "Adaptive Morphological Reconstruction for Seeded Image Segmentation" @default.
- W3102894800 cites W1903029394 @default.
- W3102894800 cites W1929880813 @default.
- W3102894800 cites W1973771202 @default.
- W3102894800 cites W1976047850 @default.
- W3102894800 cites W1978250716 @default.
- W3102894800 cites W1994356125 @default.
- W3102894800 cites W2014686685 @default.
- W3102894800 cites W2035168298 @default.
- W3102894800 cites W2044523788 @default.
- W3102894800 cites W2046925174 @default.
- W3102894800 cites W2067191022 @default.
- W3102894800 cites W2080920426 @default.
- W3102894800 cites W2095771309 @default.
- W3102894800 cites W2097164998 @default.
- W3102894800 cites W2097323414 @default.
- W3102894800 cites W2105839704 @default.
- W3102894800 cites W2105923875 @default.
- W3102894800 cites W2106798291 @default.
- W3102894800 cites W2110158442 @default.
- W3102894800 cites W2116373927 @default.
- W3102894800 cites W2118246710 @default.
- W3102894800 cites W2119300483 @default.
- W3102894800 cites W2120549843 @default.
- W3102894800 cites W2124260943 @default.
- W3102894800 cites W2124592697 @default.
- W3102894800 cites W2125637308 @default.
- W3102894800 cites W2128356031 @default.
- W3102894800 cites W2131006320 @default.
- W3102894800 cites W2157840858 @default.
- W3102894800 cites W2165423399 @default.
- W3102894800 cites W2168804568 @default.
- W3102894800 cites W2170092083 @default.
- W3102894800 cites W2171147867 @default.
- W3102894800 cites W2214925677 @default.
- W3102894800 cites W2289326164 @default.
- W3102894800 cites W2320939062 @default.
- W3102894800 cites W2327114091 @default.
- W3102894800 cites W2340624627 @default.
- W3102894800 cites W2412782625 @default.
- W3102894800 cites W2467119921 @default.
- W3102894800 cites W2474453255 @default.
- W3102894800 cites W2519191234 @default.
- W3102894800 cites W2565938754 @default.
- W3102894800 cites W2568692147 @default.
- W3102894800 cites W2568819930 @default.
- W3102894800 cites W2568842340 @default.
- W3102894800 cites W2571982087 @default.
- W3102894800 cites W2573546209 @default.
- W3102894800 cites W2594785533 @default.
- W3102894800 cites W2785177491 @default.
- W3102894800 cites W2799124825 @default.
- W3102894800 cites W2884104110 @default.
- W3102894800 cites W2963840106 @default.
- W3102894800 cites W4212803998 @default.
- W3102894800 doi "https://doi.org/10.1109/tip.2019.2920514" @default.
- W3102894800 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31180855" @default.
- W3102894800 hasPublicationYear "2019" @default.
- W3102894800 type Work @default.
- W3102894800 sameAs 3102894800 @default.
- W3102894800 citedByCount "60" @default.
- W3102894800 countsByYear W31028948002020 @default.
- W3102894800 countsByYear W31028948002021 @default.
- W3102894800 countsByYear W31028948002022 @default.
- W3102894800 countsByYear W31028948002023 @default.
- W3102894800 crossrefType "journal-article" @default.
- W3102894800 hasAuthorship W3102894800A5010643037 @default.
- W3102894800 hasAuthorship W3102894800A5029335401 @default.
- W3102894800 hasAuthorship W3102894800A5030973483 @default.
- W3102894800 hasAuthorship W3102894800A5036558091 @default.
- W3102894800 hasAuthorship W3102894800A5065250332 @default.
- W3102894800 hasAuthorship W3102894800A5075570681 @default.
- W3102894800 hasBestOaLocation W31028948001 @default.
- W3102894800 hasConcept C106131492 @default.
- W3102894800 hasConcept C115961682 @default.
- W3102894800 hasConcept C124504099 @default.
- W3102894800 hasConcept C153180895 @default.
- W3102894800 hasConcept C154945302 @default.
- W3102894800 hasConcept C185568154 @default.
- W3102894800 hasConcept C25694479 @default.
- W3102894800 hasConcept C31972630 @default.
- W3102894800 hasConcept C41008148 @default.
- W3102894800 hasConcept C42314347 @default.
- W3102894800 hasConcept C65885262 @default.
- W3102894800 hasConcept C74032544 @default.
- W3102894800 hasConcept C89600930 @default.
- W3102894800 hasConcept C9417928 @default.
- W3102894800 hasConceptScore W3102894800C106131492 @default.