Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102898875> ?p ?o ?g. }
- W3102898875 endingPage "207133" @default.
- W3102898875 startingPage "207112" @default.
- W3102898875 abstract "Modeling data generated by physiological systems is a crucial step in many problems such as classification, signal reconstruction and data augmentation. However finding appropriate models from high-dimensional data sampled from biosignals is in general unpracticable due to the problem known as the “curse of dimensionality”. Dimensionality reduction, that is representing data in some lower-dimensional space, is the commonly adopted technique to handle these data. In this context manifold learning has drawn great interests as a promising nonlinear dimensionality reduction method. Neverthless the main drawback of methods based on manifold learning is that they learn data implicitly, that is with no explicit model of data belonging to the manifold. The aim of this article is to develop a manifold learning approach to parametrize data for generative modeling of biosignals, by deriving an explicit function that represents the local parametrization of the manifold. The approach involves two main stages, i) estimation of the intrinsic dimension of data, that is the dimension of the manifold, and ii) estimation of the function representing the local parametrization of the manifold. Experimental results both on synthetic and real-world data shown the effectiveness of the presented approach. The source code of the algorithm for unsupervised learning of data is available at https://codeocean.com/capsule/6692152/tree/v3." @default.
- W3102898875 created "2020-11-23" @default.
- W3102898875 creator A5053388611 @default.
- W3102898875 creator A5074996129 @default.
- W3102898875 creator A5083197659 @default.
- W3102898875 date "2020-01-01" @default.
- W3102898875 modified "2023-09-24" @default.
- W3102898875 title "An Effective Manifold Learning Approach to Parametrize Data for Generative Modeling of Biosignals" @default.
- W3102898875 cites W1578196132 @default.
- W3102898875 cites W1876688746 @default.
- W3102898875 cites W1965130726 @default.
- W3102898875 cites W1974393980 @default.
- W3102898875 cites W1975388742 @default.
- W3102898875 cites W1978516585 @default.
- W3102898875 cites W1982149406 @default.
- W3102898875 cites W1982188267 @default.
- W3102898875 cites W2001141328 @default.
- W3102898875 cites W2002250726 @default.
- W3102898875 cites W2004581801 @default.
- W3102898875 cites W2010456906 @default.
- W3102898875 cites W2011906636 @default.
- W3102898875 cites W2013436814 @default.
- W3102898875 cites W2018700355 @default.
- W3102898875 cites W2026430219 @default.
- W3102898875 cites W2028569884 @default.
- W3102898875 cites W2029401646 @default.
- W3102898875 cites W2030876210 @default.
- W3102898875 cites W2033120570 @default.
- W3102898875 cites W2053186076 @default.
- W3102898875 cites W2057897480 @default.
- W3102898875 cites W2064675550 @default.
- W3102898875 cites W2073330885 @default.
- W3102898875 cites W2073728442 @default.
- W3102898875 cites W2075444547 @default.
- W3102898875 cites W2097212550 @default.
- W3102898875 cites W2103730177 @default.
- W3102898875 cites W2104176208 @default.
- W3102898875 cites W2106754084 @default.
- W3102898875 cites W2110285132 @default.
- W3102898875 cites W2124812588 @default.
- W3102898875 cites W2125003829 @default.
- W3102898875 cites W2129222763 @default.
- W3102898875 cites W2132549764 @default.
- W3102898875 cites W2132904166 @default.
- W3102898875 cites W2138484437 @default.
- W3102898875 cites W2149544245 @default.
- W3102898875 cites W2156761667 @default.
- W3102898875 cites W2162613571 @default.
- W3102898875 cites W2338187001 @default.
- W3102898875 cites W2344415132 @default.
- W3102898875 cites W2403175639 @default.
- W3102898875 cites W2499601348 @default.
- W3102898875 cites W2555077524 @default.
- W3102898875 cites W2556806401 @default.
- W3102898875 cites W2559813628 @default.
- W3102898875 cites W2736441366 @default.
- W3102898875 cites W2742141965 @default.
- W3102898875 cites W2773642579 @default.
- W3102898875 cites W2781016138 @default.
- W3102898875 cites W2810632432 @default.
- W3102898875 cites W2883352946 @default.
- W3102898875 cites W2931531042 @default.
- W3102898875 cites W2967341839 @default.
- W3102898875 cites W2981992760 @default.
- W3102898875 cites W3003326148 @default.
- W3102898875 cites W3104901183 @default.
- W3102898875 doi "https://doi.org/10.1109/access.2020.3038314" @default.
- W3102898875 hasPublicationYear "2020" @default.
- W3102898875 type Work @default.
- W3102898875 sameAs 3102898875 @default.
- W3102898875 citedByCount "1" @default.
- W3102898875 countsByYear W31028988752023 @default.
- W3102898875 crossrefType "journal-article" @default.
- W3102898875 hasAuthorship W3102898875A5053388611 @default.
- W3102898875 hasAuthorship W3102898875A5074996129 @default.
- W3102898875 hasAuthorship W3102898875A5083197659 @default.
- W3102898875 hasBestOaLocation W31028988751 @default.
- W3102898875 hasConcept C111030470 @default.
- W3102898875 hasConcept C11413529 @default.
- W3102898875 hasConcept C119857082 @default.
- W3102898875 hasConcept C121332964 @default.
- W3102898875 hasConcept C127413603 @default.
- W3102898875 hasConcept C134306372 @default.
- W3102898875 hasConcept C151730666 @default.
- W3102898875 hasConcept C151876577 @default.
- W3102898875 hasConcept C153120616 @default.
- W3102898875 hasConcept C153180895 @default.
- W3102898875 hasConcept C154945302 @default.
- W3102898875 hasConcept C164660894 @default.
- W3102898875 hasConcept C167966045 @default.
- W3102898875 hasConcept C184175843 @default.
- W3102898875 hasConcept C202444582 @default.
- W3102898875 hasConcept C202887219 @default.
- W3102898875 hasConcept C2779343474 @default.
- W3102898875 hasConcept C30732413 @default.
- W3102898875 hasConcept C33676613 @default.
- W3102898875 hasConcept C33923547 @default.
- W3102898875 hasConcept C39890363 @default.