Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102912723> ?p ?o ?g. }
- W3102912723 endingPage "464" @default.
- W3102912723 startingPage "453" @default.
- W3102912723 abstract "We introduce a wide and deep neural network for prediction of progression from patients with mild cognitive impairment to Alzheimer’s disease. Information from anatomical shape and tabular clinical data (demographics, biomarkers) are fused in a single neural network. The network is invariant to shape transformations and avoids the need to identify point correspondences between shapes. To account for right censored time-to-event data, i.e., when it is only known that a patient did not develop Alzheimer’s disease up to a particular time point, we employ a loss commonly used in survival analysis. Our network is trained end-to-end to combine information from a patient’s hippocampus shape and clinical biomarkers. Our experiments on data from the Alzheimer’s Disease Neuroimaging Initiative demonstrate that our proposed model is able to learn a shape descriptor that augments clinical biomarkers and outperforms a deep neural network on shape alone and a linear model on common clinical biomarkers." @default.
- W3102912723 created "2020-11-23" @default.
- W3102912723 creator A5002226098 @default.
- W3102912723 creator A5028019174 @default.
- W3102912723 creator A5028986200 @default.
- W3102912723 creator A5069195910 @default.
- W3102912723 date "2020-01-01" @default.
- W3102912723 modified "2023-10-15" @default.
- W3102912723 title "A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data" @default.
- W3102912723 cites W1576201068 @default.
- W3102912723 cites W1833523444 @default.
- W3102912723 cites W1966689159 @default.
- W3102912723 cites W1970300450 @default.
- W3102912723 cites W1990587638 @default.
- W3102912723 cites W1993571512 @default.
- W3102912723 cites W2000292092 @default.
- W3102912723 cites W2003690991 @default.
- W3102912723 cites W2009110843 @default.
- W3102912723 cites W2064913229 @default.
- W3102912723 cites W2077303669 @default.
- W3102912723 cites W2078524519 @default.
- W3102912723 cites W2084139018 @default.
- W3102912723 cites W2090537659 @default.
- W3102912723 cites W2093602450 @default.
- W3102912723 cites W2097440479 @default.
- W3102912723 cites W2108165657 @default.
- W3102912723 cites W2108673310 @default.
- W3102912723 cites W2115017507 @default.
- W3102912723 cites W2127425427 @default.
- W3102912723 cites W2129497119 @default.
- W3102912723 cites W2133703021 @default.
- W3102912723 cites W2133873291 @default.
- W3102912723 cites W2144631174 @default.
- W3102912723 cites W2148283870 @default.
- W3102912723 cites W2153171432 @default.
- W3102912723 cites W2323681028 @default.
- W3102912723 cites W2413867752 @default.
- W3102912723 cites W2475334473 @default.
- W3102912723 cites W2485936436 @default.
- W3102912723 cites W2524148322 @default.
- W3102912723 cites W2530506442 @default.
- W3102912723 cites W2555500380 @default.
- W3102912723 cites W2582524520 @default.
- W3102912723 cites W2593468621 @default.
- W3102912723 cites W2614605073 @default.
- W3102912723 cites W2753919178 @default.
- W3102912723 cites W2762081760 @default.
- W3102912723 cites W2782117342 @default.
- W3102912723 cites W2782743885 @default.
- W3102912723 cites W2787894218 @default.
- W3102912723 cites W2802185677 @default.
- W3102912723 cites W282373936 @default.
- W3102912723 cites W2909341957 @default.
- W3102912723 cites W2914209001 @default.
- W3102912723 cites W2942489367 @default.
- W3102912723 cites W2963420419 @default.
- W3102912723 cites W4211213171 @default.
- W3102912723 cites W4241074797 @default.
- W3102912723 doi "https://doi.org/10.1007/978-3-030-43823-4_37" @default.
- W3102912723 hasPublicationYear "2020" @default.
- W3102912723 type Work @default.
- W3102912723 sameAs 3102912723 @default.
- W3102912723 citedByCount "14" @default.
- W3102912723 countsByYear W31029127232020 @default.
- W3102912723 countsByYear W31029127232021 @default.
- W3102912723 countsByYear W31029127232022 @default.
- W3102912723 countsByYear W31029127232023 @default.
- W3102912723 crossrefType "book-chapter" @default.
- W3102912723 hasAuthorship W3102912723A5002226098 @default.
- W3102912723 hasAuthorship W3102912723A5028019174 @default.
- W3102912723 hasAuthorship W3102912723A5028986200 @default.
- W3102912723 hasAuthorship W3102912723A5069195910 @default.
- W3102912723 hasBestOaLocation W31029127232 @default.
- W3102912723 hasConcept C119857082 @default.
- W3102912723 hasConcept C142724271 @default.
- W3102912723 hasConcept C144024400 @default.
- W3102912723 hasConcept C149923435 @default.
- W3102912723 hasConcept C153180895 @default.
- W3102912723 hasConcept C154945302 @default.
- W3102912723 hasConcept C15744967 @default.
- W3102912723 hasConcept C169760540 @default.
- W3102912723 hasConcept C2779134260 @default.
- W3102912723 hasConcept C2780084366 @default.
- W3102912723 hasConcept C2984915365 @default.
- W3102912723 hasConcept C41008148 @default.
- W3102912723 hasConcept C50644808 @default.
- W3102912723 hasConcept C58693492 @default.
- W3102912723 hasConcept C71924100 @default.
- W3102912723 hasConceptScore W3102912723C119857082 @default.
- W3102912723 hasConceptScore W3102912723C142724271 @default.
- W3102912723 hasConceptScore W3102912723C144024400 @default.
- W3102912723 hasConceptScore W3102912723C149923435 @default.
- W3102912723 hasConceptScore W3102912723C153180895 @default.
- W3102912723 hasConceptScore W3102912723C154945302 @default.
- W3102912723 hasConceptScore W3102912723C15744967 @default.
- W3102912723 hasConceptScore W3102912723C169760540 @default.
- W3102912723 hasConceptScore W3102912723C2779134260 @default.
- W3102912723 hasConceptScore W3102912723C2780084366 @default.