Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102923495> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3102923495 endingPage "5" @default.
- W3102923495 startingPage "1" @default.
- W3102923495 abstract "Deep learning has attracted intensive attention in synthetic aperture radar (SAR) automatic target recognition (ATR). Usually, a considerable number of labeled samples are necessary to learn a deep model for obtaining good generalization capability. However, the process of sample labeling is time-consuming and costly. This letter proposes an active self-paced deep learning (ASPDL) approach to SAR ATR. In a nutshell, we first introduce the Bayesian inference into the process of deep model parameter optimization, aiming at learning a robust classification model in the case of a limited number of labeled samples. Next, a cost-effective sample selection strategy is presented to iteratively and actively select the informative samples from a pool of unlabeled samples for labeling. Concretely, high-confidence samples are actively selected through self-paced learning (SPL) way and automatically pseudo-labeled with the current classification model, whereas low-confidence samples are chosen through an active learning strategy and manually labeled. Finally, we update the parameters of the model by minimizing a dual-loss function using a new training set that is constructed by incorporating new labeled samples with original ones. Experiments on the moving and stationary target acquisition and recognition (MSTAR) benchmark data demonstrate that the proposed method can achieve better classification accuracy with relatively few labeled samples compared with some state-of-the-art methods." @default.
- W3102923495 created "2020-11-23" @default.
- W3102923495 creator A5006095323 @default.
- W3102923495 creator A5032781096 @default.
- W3102923495 creator A5040250499 @default.
- W3102923495 creator A5050556614 @default.
- W3102923495 creator A5070724586 @default.
- W3102923495 creator A5073414420 @default.
- W3102923495 date "2022-01-01" @default.
- W3102923495 modified "2023-10-16" @default.
- W3102923495 title "A Bayesian Approach to Active Self-Paced Deep Learning for SAR Automatic Target Recognition" @default.
- W3102923495 cites W1567512734 @default.
- W3102923495 cites W2035054708 @default.
- W3102923495 cites W2410591237 @default.
- W3102923495 cites W2471138382 @default.
- W3102923495 cites W2520774990 @default.
- W3102923495 cites W2575032143 @default.
- W3102923495 cites W2588453093 @default.
- W3102923495 cites W2759213214 @default.
- W3102923495 cites W2790279720 @default.
- W3102923495 cites W2809113079 @default.
- W3102923495 cites W2883279772 @default.
- W3102923495 cites W2889773939 @default.
- W3102923495 cites W2897760800 @default.
- W3102923495 cites W2944003962 @default.
- W3102923495 cites W2983707810 @default.
- W3102923495 cites W2990867745 @default.
- W3102923495 cites W4375939887 @default.
- W3102923495 doi "https://doi.org/10.1109/lgrs.2020.3036585" @default.
- W3102923495 hasPublicationYear "2022" @default.
- W3102923495 type Work @default.
- W3102923495 sameAs 3102923495 @default.
- W3102923495 citedByCount "7" @default.
- W3102923495 countsByYear W31029234952022 @default.
- W3102923495 countsByYear W31029234952023 @default.
- W3102923495 crossrefType "journal-article" @default.
- W3102923495 hasAuthorship W3102923495A5006095323 @default.
- W3102923495 hasAuthorship W3102923495A5032781096 @default.
- W3102923495 hasAuthorship W3102923495A5040250499 @default.
- W3102923495 hasAuthorship W3102923495A5050556614 @default.
- W3102923495 hasAuthorship W3102923495A5070724586 @default.
- W3102923495 hasAuthorship W3102923495A5073414420 @default.
- W3102923495 hasConcept C108583219 @default.
- W3102923495 hasConcept C117623542 @default.
- W3102923495 hasConcept C119857082 @default.
- W3102923495 hasConcept C13280743 @default.
- W3102923495 hasConcept C134306372 @default.
- W3102923495 hasConcept C153180895 @default.
- W3102923495 hasConcept C154945302 @default.
- W3102923495 hasConcept C177148314 @default.
- W3102923495 hasConcept C185592680 @default.
- W3102923495 hasConcept C185798385 @default.
- W3102923495 hasConcept C198531522 @default.
- W3102923495 hasConcept C205649164 @default.
- W3102923495 hasConcept C2776214188 @default.
- W3102923495 hasConcept C2779726219 @default.
- W3102923495 hasConcept C33923547 @default.
- W3102923495 hasConcept C41008148 @default.
- W3102923495 hasConcept C43617362 @default.
- W3102923495 hasConcept C87360688 @default.
- W3102923495 hasConceptScore W3102923495C108583219 @default.
- W3102923495 hasConceptScore W3102923495C117623542 @default.
- W3102923495 hasConceptScore W3102923495C119857082 @default.
- W3102923495 hasConceptScore W3102923495C13280743 @default.
- W3102923495 hasConceptScore W3102923495C134306372 @default.
- W3102923495 hasConceptScore W3102923495C153180895 @default.
- W3102923495 hasConceptScore W3102923495C154945302 @default.
- W3102923495 hasConceptScore W3102923495C177148314 @default.
- W3102923495 hasConceptScore W3102923495C185592680 @default.
- W3102923495 hasConceptScore W3102923495C185798385 @default.
- W3102923495 hasConceptScore W3102923495C198531522 @default.
- W3102923495 hasConceptScore W3102923495C205649164 @default.
- W3102923495 hasConceptScore W3102923495C2776214188 @default.
- W3102923495 hasConceptScore W3102923495C2779726219 @default.
- W3102923495 hasConceptScore W3102923495C33923547 @default.
- W3102923495 hasConceptScore W3102923495C41008148 @default.
- W3102923495 hasConceptScore W3102923495C43617362 @default.
- W3102923495 hasConceptScore W3102923495C87360688 @default.
- W3102923495 hasFunder F4320321001 @default.
- W3102923495 hasLocation W31029234951 @default.
- W3102923495 hasOpenAccess W3102923495 @default.
- W3102923495 hasPrimaryLocation W31029234951 @default.
- W3102923495 hasRelatedWork W1964120219 @default.
- W3102923495 hasRelatedWork W2085350532 @default.
- W3102923495 hasRelatedWork W2112220318 @default.
- W3102923495 hasRelatedWork W2534070885 @default.
- W3102923495 hasRelatedWork W2543161807 @default.
- W3102923495 hasRelatedWork W2763435447 @default.
- W3102923495 hasRelatedWork W2889079306 @default.
- W3102923495 hasRelatedWork W2914315257 @default.
- W3102923495 hasRelatedWork W2973417394 @default.
- W3102923495 hasRelatedWork W4324116447 @default.
- W3102923495 hasVolume "19" @default.
- W3102923495 isParatext "false" @default.
- W3102923495 isRetracted "false" @default.
- W3102923495 magId "3102923495" @default.
- W3102923495 workType "article" @default.