Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103092506> ?p ?o ?g. }
- W3103092506 endingPage "9" @default.
- W3103092506 startingPage "9" @default.
- W3103092506 abstract "Constraining parameters such as the initial mass function high-mass slope and the frequency of Type Ia supernovae is of critical importance in the ongoing quest to understand galactic physics and create realistic hydrodynamical simulations. In this paper, we demonstrate a method for precisely determining these using individual chemical abundances from a large set of stars, coupled with some estimate of their ages. Inference is performed via the simple chemical evolution model Chempy in a Bayesian framework, marginalizing over each star's specific interstellar medium parameters, including an element-specific model error parameter to account for inadequacies in our model. Hamiltonian Monte Carlo methods are used to sample the posterior function, which is made possible by replacing Chempy with a trained neural network at negligible error. The approach is tested using data from both Chempy and the IllustrisTNG simulation, showing subpercent agreement between inferred and true parameters using data from up to 1600 individual stellar abundances. For IllustrisTNG, the strongest constraints are obtained from metal ratios, competitive with those from other methods including star counts. Analysis using a different set of nucleosynthetic yields shows that incorrectly assumed yield models can give non-negligible bias in the derived parameters; this is reduced by our model errors, which further show how well the yield tables match the data. We also find a significant bias from analyzing only a small set of stars, as is often done in current analyses. The method can be easily applied to observational data, giving tight bounds on key galactic parameters from chemical abundances alone." @default.
- W3103092506 created "2020-11-23" @default.
- W3103092506 creator A5056440157 @default.
- W3103092506 creator A5067946504 @default.
- W3103092506 date "2019-12-05" @default.
- W3103092506 modified "2023-09-27" @default.
- W3103092506 title "Inferring Galactic Parameters from Chemical Abundances: A Multi-star Approach" @default.
- W3103092506 cites W1875794268 @default.
- W3103092506 cites W1972811725 @default.
- W3103092506 cites W1986828086 @default.
- W3103092506 cites W1994166266 @default.
- W3103092506 cites W2006878995 @default.
- W3103092506 cites W2020999234 @default.
- W3103092506 cites W2034477498 @default.
- W3103092506 cites W2046139155 @default.
- W3103092506 cites W2059302115 @default.
- W3103092506 cites W2061016656 @default.
- W3103092506 cites W2097111096 @default.
- W3103092506 cites W2100689867 @default.
- W3103092506 cites W2105425103 @default.
- W3103092506 cites W2123849097 @default.
- W3103092506 cites W2125174497 @default.
- W3103092506 cites W2135625048 @default.
- W3103092506 cites W2135690153 @default.
- W3103092506 cites W2138309709 @default.
- W3103092506 cites W2174591450 @default.
- W3103092506 cites W2174781540 @default.
- W3103092506 cites W2194676804 @default.
- W3103092506 cites W2217402295 @default.
- W3103092506 cites W2280221834 @default.
- W3103092506 cites W2298511406 @default.
- W3103092506 cites W2344683712 @default.
- W3103092506 cites W2345263333 @default.
- W3103092506 cites W2473225062 @default.
- W3103092506 cites W2527812248 @default.
- W3103092506 cites W2528641579 @default.
- W3103092506 cites W2531492754 @default.
- W3103092506 cites W2557150055 @default.
- W3103092506 cites W2600163159 @default.
- W3103092506 cites W2618571692 @default.
- W3103092506 cites W2621123857 @default.
- W3103092506 cites W2734538553 @default.
- W3103092506 cites W2735189638 @default.
- W3103092506 cites W2735395126 @default.
- W3103092506 cites W2735531560 @default.
- W3103092506 cites W2735710795 @default.
- W3103092506 cites W2752078209 @default.
- W3103092506 cites W2761919827 @default.
- W3103092506 cites W2765260209 @default.
- W3103092506 cites W2768072459 @default.
- W3103092506 cites W2773195838 @default.
- W3103092506 cites W2783976032 @default.
- W3103092506 cites W2786988971 @default.
- W3103092506 cites W2791740655 @default.
- W3103092506 cites W2888532099 @default.
- W3103092506 cites W2899497983 @default.
- W3103092506 cites W2905359943 @default.
- W3103092506 cites W2908112692 @default.
- W3103092506 cites W2931647666 @default.
- W3103092506 cites W2952751471 @default.
- W3103092506 cites W2964150577 @default.
- W3103092506 cites W2995420188 @default.
- W3103092506 cites W3098340828 @default.
- W3103092506 cites W3099243461 @default.
- W3103092506 cites W3099515705 @default.
- W3103092506 cites W3099680556 @default.
- W3103092506 cites W3099716837 @default.
- W3103092506 cites W3100024326 @default.
- W3103092506 cites W3100697534 @default.
- W3103092506 cites W3100762863 @default.
- W3103092506 cites W3101434244 @default.
- W3103092506 cites W3101834416 @default.
- W3103092506 cites W3102014803 @default.
- W3103092506 cites W3102406364 @default.
- W3103092506 cites W3103246553 @default.
- W3103092506 cites W3103483249 @default.
- W3103092506 cites W3103488511 @default.
- W3103092506 cites W3104344724 @default.
- W3103092506 cites W3104567669 @default.
- W3103092506 cites W3105873518 @default.
- W3103092506 cites W3106294757 @default.
- W3103092506 cites W3122474735 @default.
- W3103092506 cites W3124280501 @default.
- W3103092506 cites W3156092089 @default.
- W3103092506 cites W4292875581 @default.
- W3103092506 cites W4294933874 @default.
- W3103092506 cites W4294950994 @default.
- W3103092506 cites W4298170560 @default.
- W3103092506 doi "https://doi.org/10.3847/1538-4357/ab5186" @default.
- W3103092506 hasPublicationYear "2019" @default.
- W3103092506 type Work @default.
- W3103092506 sameAs 3103092506 @default.
- W3103092506 citedByCount "2" @default.
- W3103092506 countsByYear W31030925062022 @default.
- W3103092506 crossrefType "journal-article" @default.
- W3103092506 hasAuthorship W3103092506A5056440157 @default.
- W3103092506 hasAuthorship W3103092506A5067946504 @default.
- W3103092506 hasBestOaLocation W31030925061 @default.