Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103093013> ?p ?o ?g. }
- W3103093013 abstract "Abstract Background Variation in intercellular methylation patterns can complicate the use of methylation biomarkers for clinical diagnostic applications such as blood-based cancer testing. Here, we describe development and validation of a methylation density binary classification method called EpiClass (available for download at https://github.com/Elnitskilab/EpiClass ), that can be used to predict and optimize the performance of methylation biomarkers, particularly in challenging, heterogeneous samples such as liquid biopsies. This approach is based upon leveraging statistical differences in single-molecule sample methylation density distributions to identify ideal thresholds for sample classification. Results We developed and tested the classifier using reduced representation bisulfite sequencing (RRBS) data derived from ovarian carcinoma tissue DNA and controls. We used these data to perform in silico simulations using methylation density profiles from individual epiallelic copies of ZNF154 , a genomic locus known to be recurrently methylated in numerous cancer types. From these profiles, we predicted the performance of the classifier in liquid biopsies for the detection of epithelial ovarian carcinomas (EOC). In silico analysis indicated that EpiClass could be leveraged to better identify cancer-positive liquid biopsy samples by implementing precise thresholds with respect to methylation density profiles derived from circulating cell-free DNA (cfDNA) analysis. These predictions were confirmed experimentally using DREAMing to perform digital methylation density analysis on a cohort of low volume (1-mL) plasma samples obtained from 26 EOC-positive and 41 cancer-free women. EpiClass performance was then validated in an independent cohort of 24 plasma specimens, derived from a longitudinal study of 8 EOC-positive women, and 12 plasma specimens derived from 12 healthy women, respectively, attaining a sensitivity/specificity of 91.7%/100.0%. Direct comparison of CA-125 measurements with EpiClass demonstrated that EpiClass was able to better identify EOC-positive women than standard CA-125 assessment. Finally, we used independent whole genome bisulfite sequencing (WGBS) datasets to demonstrate that EpiClass can also identify other cancer types as well or better than alternative methylation-based classifiers. Conclusions Our results indicate that assessment of intramolecular methylation density distributions calculated from cfDNA facilitate the use of methylation biomarkers for diagnostic applications. Furthermore, we demonstrated that EpiClass analysis of ZNF154 methylation was able to outperform CA-125 in the detection of etiologically-diverse ovarian carcinomas, indicating the broad utility of ZNF154 for use as a biomarker of ovarian cancer." @default.
- W3103093013 created "2020-11-23" @default.
- W3103093013 creator A5003937829 @default.
- W3103093013 creator A5006320387 @default.
- W3103093013 creator A5012892873 @default.
- W3103093013 creator A5041869836 @default.
- W3103093013 creator A5052524873 @default.
- W3103093013 creator A5064888640 @default.
- W3103093013 creator A5069955526 @default.
- W3103093013 creator A5075644443 @default.
- W3103093013 creator A5081017740 @default.
- W3103093013 creator A5087630956 @default.
- W3103093013 date "2019-03-18" @default.
- W3103093013 modified "2023-10-04" @default.
- W3103093013 title "Improving the clinical performance of blood-based DNA methylation biomarkers utilizing locus-specific epigenetic heterogeneity" @default.
- W3103093013 cites W1851645990 @default.
- W3103093013 cites W1904482722 @default.
- W3103093013 cites W1972169216 @default.
- W3103093013 cites W1978241371 @default.
- W3103093013 cites W1979576560 @default.
- W3103093013 cites W1981589089 @default.
- W3103093013 cites W1990711772 @default.
- W3103093013 cites W1994465394 @default.
- W3103093013 cites W2006617902 @default.
- W3103093013 cites W2029694543 @default.
- W3103093013 cites W2039276888 @default.
- W3103093013 cites W2040257851 @default.
- W3103093013 cites W2046646392 @default.
- W3103093013 cites W2057037007 @default.
- W3103093013 cites W2074746593 @default.
- W3103093013 cites W2082540681 @default.
- W3103093013 cites W2088881365 @default.
- W3103093013 cites W2089135124 @default.
- W3103093013 cites W2089470652 @default.
- W3103093013 cites W2090194040 @default.
- W3103093013 cites W2103081012 @default.
- W3103093013 cites W2113296450 @default.
- W3103093013 cites W2117038014 @default.
- W3103093013 cites W2121417064 @default.
- W3103093013 cites W2125154191 @default.
- W3103093013 cites W2127192982 @default.
- W3103093013 cites W2128414543 @default.
- W3103093013 cites W2130189740 @default.
- W3103093013 cites W2131374955 @default.
- W3103093013 cites W2140394554 @default.
- W3103093013 cites W2147518517 @default.
- W3103093013 cites W2151140316 @default.
- W3103093013 cites W2152575748 @default.
- W3103093013 cites W2157535100 @default.
- W3103093013 cites W2158485828 @default.
- W3103093013 cites W2163327652 @default.
- W3103093013 cites W2163599835 @default.
- W3103093013 cites W2164214190 @default.
- W3103093013 cites W2164229713 @default.
- W3103093013 cites W2164327622 @default.
- W3103093013 cites W2170634666 @default.
- W3103093013 cites W2255370171 @default.
- W3103093013 cites W2258981719 @default.
- W3103093013 cites W2281105855 @default.
- W3103093013 cites W2298824325 @default.
- W3103093013 cites W2460742292 @default.
- W3103093013 cites W2494201638 @default.
- W3103093013 cites W2508067163 @default.
- W3103093013 cites W2537310520 @default.
- W3103093013 cites W2593934358 @default.
- W3103093013 cites W2598551510 @default.
- W3103093013 cites W2602657459 @default.
- W3103093013 cites W2623612507 @default.
- W3103093013 cites W2747939174 @default.
- W3103093013 cites W2777534716 @default.
- W3103093013 cites W2808051495 @default.
- W3103093013 cites W2886760468 @default.
- W3103093013 cites W2889713233 @default.
- W3103093013 cites W2892541293 @default.
- W3103093013 cites W2900771557 @default.
- W3103093013 cites W4297674379 @default.
- W3103093013 doi "https://doi.org/10.1101/579839" @default.
- W3103093013 hasPublicationYear "2019" @default.
- W3103093013 type Work @default.
- W3103093013 sameAs 3103093013 @default.
- W3103093013 citedByCount "0" @default.
- W3103093013 crossrefType "posted-content" @default.
- W3103093013 hasAuthorship W3103093013A5003937829 @default.
- W3103093013 hasAuthorship W3103093013A5006320387 @default.
- W3103093013 hasAuthorship W3103093013A5012892873 @default.
- W3103093013 hasAuthorship W3103093013A5041869836 @default.
- W3103093013 hasAuthorship W3103093013A5052524873 @default.
- W3103093013 hasAuthorship W3103093013A5064888640 @default.
- W3103093013 hasAuthorship W3103093013A5069955526 @default.
- W3103093013 hasAuthorship W3103093013A5075644443 @default.
- W3103093013 hasAuthorship W3103093013A5081017740 @default.
- W3103093013 hasAuthorship W3103093013A5087630956 @default.
- W3103093013 hasBestOaLocation W31030930131 @default.
- W3103093013 hasConcept C104317684 @default.
- W3103093013 hasConcept C121608353 @default.
- W3103093013 hasConcept C143998085 @default.
- W3103093013 hasConcept C150194340 @default.
- W3103093013 hasConcept C190727270 @default.
- W3103093013 hasConcept C2775905019 @default.
- W3103093013 hasConcept C2779529041 @default.