Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103113183> ?p ?o ?g. }
- W3103113183 endingPage "69" @default.
- W3103113183 startingPage "33" @default.
- W3103113183 abstract "An efficient algorithm is proposed for Bayesian model calibration, which is commonly used to estimate the model parameters of non-linear, computationally expensive models using measurement data. The approach is based on Bayesian statistics: using a prior distribution and a likelihood, the posterior distribution is obtained through application of Bayes' law. Our novel algorithm to accurately determine this posterior requires significantly fewer discrete model evaluations than traditional Monte Carlo methods. The key idea is to replace the expensive model by an interpolating surrogate model and to construct the interpolating nodal set maximizing the accuracy of the posterior. To determine such a nodal set an extension to weighted Leja nodes is introduced, based on a new weighting function. We prove that the convergence of the posterior has the same rate as the convergence of the model. If the convergence of the posterior is measured in the Kullback-Leibler divergence, the rate doubles. The algorithm and its theoretical properties are verified in three different test cases: analytical cases that confirm the correctness of the theoretical findings, Burgers' equation to show its applicability in implicit problems, and finally the calibration of the closure parameters of a turbulence model to show the effectiveness for computationally expensive problems." @default.
- W3103113183 created "2020-11-23" @default.
- W3103113183 creator A5001549702 @default.
- W3103113183 creator A5004173810 @default.
- W3103113183 creator A5022859984 @default.
- W3103113183 creator A5072502727 @default.
- W3103113183 date "2020-06-01" @default.
- W3103113183 modified "2023-10-18" @default.
- W3103113183 title "Bayesian Model Calibration with Interpolating Polynomials based on Adaptively Weighted Leja Nodes" @default.
- W3103113183 cites W1485489034 @default.
- W3103113183 cites W1505506730 @default.
- W3103113183 cites W1552396428 @default.
- W3103113183 cites W1583872979 @default.
- W3103113183 cites W1593365097 @default.
- W3103113183 cites W1885427747 @default.
- W3103113183 cites W1965175390 @default.
- W3103113183 cites W1973333099 @default.
- W3103113183 cites W1981115560 @default.
- W3103113183 cites W1983406208 @default.
- W3103113183 cites W1996012389 @default.
- W3103113183 cites W1997719109 @default.
- W3103113183 cites W1998213879 @default.
- W3103113183 cites W2003241476 @default.
- W3103113183 cites W2009405650 @default.
- W3103113183 cites W2011838656 @default.
- W3103113183 cites W2017880874 @default.
- W3103113183 cites W2021857616 @default.
- W3103113183 cites W2039072764 @default.
- W3103113183 cites W2040727702 @default.
- W3103113183 cites W2041865295 @default.
- W3103113183 cites W2045656233 @default.
- W3103113183 cites W2056522847 @default.
- W3103113183 cites W2056760934 @default.
- W3103113183 cites W2088771341 @default.
- W3103113183 cites W2093800894 @default.
- W3103113183 cites W2106756929 @default.
- W3103113183 cites W2116416291 @default.
- W3103113183 cites W2117122565 @default.
- W3103113183 cites W2119179880 @default.
- W3103113183 cites W2138309709 @default.
- W3103113183 cites W2144513957 @default.
- W3103113183 cites W2295444475 @default.
- W3103113183 cites W2310768323 @default.
- W3103113183 cites W2313583458 @default.
- W3103113183 cites W2319329301 @default.
- W3103113183 cites W2330916193 @default.
- W3103113183 cites W2798909945 @default.
- W3103113183 cites W2810524380 @default.
- W3103113183 cites W2951381089 @default.
- W3103113183 cites W2962743564 @default.
- W3103113183 cites W2963242019 @default.
- W3103113183 cites W3217167116 @default.
- W3103113183 doi "https://doi.org/10.4208/cicp.oa-2018-0218" @default.
- W3103113183 hasPublicationYear "2020" @default.
- W3103113183 type Work @default.
- W3103113183 sameAs 3103113183 @default.
- W3103113183 citedByCount "8" @default.
- W3103113183 countsByYear W31031131832019 @default.
- W3103113183 countsByYear W31031131832020 @default.
- W3103113183 countsByYear W31031131832021 @default.
- W3103113183 countsByYear W31031131832023 @default.
- W3103113183 crossrefType "journal-article" @default.
- W3103113183 hasAuthorship W3103113183A5001549702 @default.
- W3103113183 hasAuthorship W3103113183A5004173810 @default.
- W3103113183 hasAuthorship W3103113183A5022859984 @default.
- W3103113183 hasAuthorship W3103113183A5072502727 @default.
- W3103113183 hasBestOaLocation W31031131831 @default.
- W3103113183 hasConcept C105795698 @default.
- W3103113183 hasConcept C107673813 @default.
- W3103113183 hasConcept C11413529 @default.
- W3103113183 hasConcept C126255220 @default.
- W3103113183 hasConcept C126838900 @default.
- W3103113183 hasConcept C138885662 @default.
- W3103113183 hasConcept C160234255 @default.
- W3103113183 hasConcept C162324750 @default.
- W3103113183 hasConcept C165838908 @default.
- W3103113183 hasConcept C183115368 @default.
- W3103113183 hasConcept C207390915 @default.
- W3103113183 hasConcept C26517878 @default.
- W3103113183 hasConcept C2777303404 @default.
- W3103113183 hasConcept C28826006 @default.
- W3103113183 hasConcept C33923547 @default.
- W3103113183 hasConcept C38652104 @default.
- W3103113183 hasConcept C41008148 @default.
- W3103113183 hasConcept C41895202 @default.
- W3103113183 hasConcept C50522688 @default.
- W3103113183 hasConcept C57830394 @default.
- W3103113183 hasConcept C57869625 @default.
- W3103113183 hasConcept C71924100 @default.
- W3103113183 hasConceptScore W3103113183C105795698 @default.
- W3103113183 hasConceptScore W3103113183C107673813 @default.
- W3103113183 hasConceptScore W3103113183C11413529 @default.
- W3103113183 hasConceptScore W3103113183C126255220 @default.
- W3103113183 hasConceptScore W3103113183C126838900 @default.
- W3103113183 hasConceptScore W3103113183C138885662 @default.
- W3103113183 hasConceptScore W3103113183C160234255 @default.
- W3103113183 hasConceptScore W3103113183C162324750 @default.
- W3103113183 hasConceptScore W3103113183C165838908 @default.