Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103117922> ?p ?o ?g. }
- W3103117922 abstract "Many applications involve estimation of a signal matrix from a noisy data matrix. In such cases, it has been observed that estimators that shrink or truncate the singular values of the data matrix perform well when the signal matrix has approximately low rank. In this article, we generalize this approach to the estimation of a tensor of parameters from noisy tensor data. We develop new classes of estimators that shrink or threshold the mode-specific singular values from the higher-order singular value decomposition. These classes of estimators are indexed by tuning parameters, which we adaptively choose from the data by minimizing Stein's unbiased risk estimate. In particular, this procedure provides a way to estimate the multilinear rank of the underlying signal tensor. Using simulation studies under a variety of conditions, we show that our estimators perform well when the mean tensor has approximately low multilinear rank, and perform competitively when the signal tensor does not have approximately low multilinear rank. We illustrate the use of these methods in an application to multivariate relational data." @default.
- W3103117922 created "2020-11-23" @default.
- W3103117922 creator A5032703090 @default.
- W3103117922 creator A5090717566 @default.
- W3103117922 date "2017-01-01" @default.
- W3103117922 modified "2023-09-24" @default.
- W3103117922 title "Adaptive higher-order spectral estimators" @default.
- W3103117922 cites W1978293868 @default.
- W3103117922 cites W1986678274 @default.
- W3103117922 cites W1995691260 @default.
- W3103117922 cites W2003493253 @default.
- W3103117922 cites W2004026774 @default.
- W3103117922 cites W2008572537 @default.
- W3103117922 cites W2013912476 @default.
- W3103117922 cites W2017304912 @default.
- W3103117922 cites W2017398724 @default.
- W3103117922 cites W2018282388 @default.
- W3103117922 cites W2019433413 @default.
- W3103117922 cites W2020925091 @default.
- W3103117922 cites W2024165284 @default.
- W3103117922 cites W2031049553 @default.
- W3103117922 cites W2035061066 @default.
- W3103117922 cites W2046941888 @default.
- W3103117922 cites W2049241760 @default.
- W3103117922 cites W2050623533 @default.
- W3103117922 cites W2054640142 @default.
- W3103117922 cites W2056283274 @default.
- W3103117922 cites W2061461017 @default.
- W3103117922 cites W2063942101 @default.
- W3103117922 cites W2079860873 @default.
- W3103117922 cites W2081940622 @default.
- W3103117922 cites W2091449379 @default.
- W3103117922 cites W2096710051 @default.
- W3103117922 cites W2101797518 @default.
- W3103117922 cites W2118405301 @default.
- W3103117922 cites W2119412403 @default.
- W3103117922 cites W2132267493 @default.
- W3103117922 cites W2135307683 @default.
- W3103117922 cites W2136002544 @default.
- W3103117922 cites W2145319139 @default.
- W3103117922 cites W2147544992 @default.
- W3103117922 cites W2150382423 @default.
- W3103117922 cites W2490308495 @default.
- W3103117922 cites W2535617683 @default.
- W3103117922 cites W2962946304 @default.
- W3103117922 cites W2963550944 @default.
- W3103117922 cites W2963780177 @default.
- W3103117922 cites W3031967244 @default.
- W3103117922 cites W3102581530 @default.
- W3103117922 cites W3104577407 @default.
- W3103117922 doi "https://doi.org/10.1214/17-ejs1330" @default.
- W3103117922 hasPublicationYear "2017" @default.
- W3103117922 type Work @default.
- W3103117922 sameAs 3103117922 @default.
- W3103117922 citedByCount "4" @default.
- W3103117922 countsByYear W31031179222019 @default.
- W3103117922 countsByYear W31031179222021 @default.
- W3103117922 countsByYear W31031179222022 @default.
- W3103117922 crossrefType "journal-article" @default.
- W3103117922 hasAuthorship W3103117922A5032703090 @default.
- W3103117922 hasAuthorship W3103117922A5090717566 @default.
- W3103117922 hasBestOaLocation W31031179221 @default.
- W3103117922 hasConcept C105795698 @default.
- W3103117922 hasConcept C106487976 @default.
- W3103117922 hasConcept C109282560 @default.
- W3103117922 hasConcept C11413529 @default.
- W3103117922 hasConcept C114614502 @default.
- W3103117922 hasConcept C121332964 @default.
- W3103117922 hasConcept C126255220 @default.
- W3103117922 hasConcept C136119220 @default.
- W3103117922 hasConcept C138354692 @default.
- W3103117922 hasConcept C155281189 @default.
- W3103117922 hasConcept C158693339 @default.
- W3103117922 hasConcept C159985019 @default.
- W3103117922 hasConcept C164226766 @default.
- W3103117922 hasConcept C169171071 @default.
- W3103117922 hasConcept C185429906 @default.
- W3103117922 hasConcept C192562407 @default.
- W3103117922 hasConcept C202444582 @default.
- W3103117922 hasConcept C22789450 @default.
- W3103117922 hasConcept C28826006 @default.
- W3103117922 hasConcept C33923547 @default.
- W3103117922 hasConcept C60321788 @default.
- W3103117922 hasConcept C62520636 @default.
- W3103117922 hasConcept C84392682 @default.
- W3103117922 hasConcept C90199385 @default.
- W3103117922 hasConceptScore W3103117922C105795698 @default.
- W3103117922 hasConceptScore W3103117922C106487976 @default.
- W3103117922 hasConceptScore W3103117922C109282560 @default.
- W3103117922 hasConceptScore W3103117922C11413529 @default.
- W3103117922 hasConceptScore W3103117922C114614502 @default.
- W3103117922 hasConceptScore W3103117922C121332964 @default.
- W3103117922 hasConceptScore W3103117922C126255220 @default.
- W3103117922 hasConceptScore W3103117922C136119220 @default.
- W3103117922 hasConceptScore W3103117922C138354692 @default.
- W3103117922 hasConceptScore W3103117922C155281189 @default.
- W3103117922 hasConceptScore W3103117922C158693339 @default.
- W3103117922 hasConceptScore W3103117922C159985019 @default.
- W3103117922 hasConceptScore W3103117922C164226766 @default.
- W3103117922 hasConceptScore W3103117922C169171071 @default.