Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103126089> ?p ?o ?g. }
- W3103126089 abstract "We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed $$ mathcal{N} $$ = 4 SYM theory. We show that the transfer matrix “building” the fishnet graphs emerges from the R−matrix of non-compact conformal SU(2, 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of $$ mathcal{N} $$ = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q−functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr(ϕ 1 ) where ϕ1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2, 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of $$ mathcal{N} $$ = 4 SYM." @default.
- W3103126089 created "2020-11-23" @default.
- W3103126089 creator A5008826862 @default.
- W3103126089 creator A5041807424 @default.
- W3103126089 creator A5054702699 @default.
- W3103126089 creator A5078272428 @default.
- W3103126089 creator A5090068708 @default.
- W3103126089 date "2018-01-01" @default.
- W3103126089 modified "2023-10-09" @default.
- W3103126089 title "Integrability of conformal fishnet theory" @default.
- W3103126089 cites W1760283347 @default.
- W3103126089 cites W1964540768 @default.
- W3103126089 cites W1966411596 @default.
- W3103126089 cites W1987627624 @default.
- W3103126089 cites W1991970254 @default.
- W3103126089 cites W2018501962 @default.
- W3103126089 cites W2022491164 @default.
- W3103126089 cites W2050253754 @default.
- W3103126089 cites W2069930493 @default.
- W3103126089 cites W2105877594 @default.
- W3103126089 cites W2118326704 @default.
- W3103126089 cites W2197469188 @default.
- W3103126089 cites W2209322768 @default.
- W3103126089 cites W2258458513 @default.
- W3103126089 cites W2279346693 @default.
- W3103126089 cites W2342934183 @default.
- W3103126089 cites W2498044924 @default.
- W3103126089 cites W2613533455 @default.
- W3103126089 cites W2963867128 @default.
- W3103126089 cites W3098896124 @default.
- W3103126089 cites W3098972940 @default.
- W3103126089 cites W3099621541 @default.
- W3103126089 cites W3100282457 @default.
- W3103126089 cites W3100844267 @default.
- W3103126089 cites W3102243506 @default.
- W3103126089 cites W3102539773 @default.
- W3103126089 cites W3103091788 @default.
- W3103126089 cites W3103738526 @default.
- W3103126089 cites W3104813079 @default.
- W3103126089 cites W3105041688 @default.
- W3103126089 cites W3105605105 @default.
- W3103126089 cites W3143899907 @default.
- W3103126089 cites W4297286636 @default.
- W3103126089 cites W923469440 @default.
- W3103126089 doi "https://doi.org/10.1007/jhep01(2018)095" @default.
- W3103126089 hasPublicationYear "2018" @default.
- W3103126089 type Work @default.
- W3103126089 sameAs 3103126089 @default.
- W3103126089 citedByCount "73" @default.
- W3103126089 countsByYear W31031260892018 @default.
- W3103126089 countsByYear W31031260892019 @default.
- W3103126089 countsByYear W31031260892020 @default.
- W3103126089 countsByYear W31031260892021 @default.
- W3103126089 countsByYear W31031260892022 @default.
- W3103126089 countsByYear W31031260892023 @default.
- W3103126089 crossrefType "journal-article" @default.
- W3103126089 hasAuthorship W3103126089A5008826862 @default.
- W3103126089 hasAuthorship W3103126089A5041807424 @default.
- W3103126089 hasAuthorship W3103126089A5054702699 @default.
- W3103126089 hasAuthorship W3103126089A5078272428 @default.
- W3103126089 hasAuthorship W3103126089A5090068708 @default.
- W3103126089 hasBestOaLocation W31031260891 @default.
- W3103126089 hasConcept C106487976 @default.
- W3103126089 hasConcept C11413529 @default.
- W3103126089 hasConcept C121332964 @default.
- W3103126089 hasConcept C134306372 @default.
- W3103126089 hasConcept C159985019 @default.
- W3103126089 hasConcept C18199665 @default.
- W3103126089 hasConcept C192562407 @default.
- W3103126089 hasConcept C2524010 @default.
- W3103126089 hasConcept C2777345500 @default.
- W3103126089 hasConcept C28855332 @default.
- W3103126089 hasConcept C33332235 @default.
- W3103126089 hasConcept C33923547 @default.
- W3103126089 hasConcept C37914503 @default.
- W3103126089 hasConcept C42704618 @default.
- W3103126089 hasConcept C57691317 @default.
- W3103126089 hasConcept C62520636 @default.
- W3103126089 hasConcept C97355855 @default.
- W3103126089 hasConcept C98214594 @default.
- W3103126089 hasConcept C99844830 @default.
- W3103126089 hasConceptScore W3103126089C106487976 @default.
- W3103126089 hasConceptScore W3103126089C11413529 @default.
- W3103126089 hasConceptScore W3103126089C121332964 @default.
- W3103126089 hasConceptScore W3103126089C134306372 @default.
- W3103126089 hasConceptScore W3103126089C159985019 @default.
- W3103126089 hasConceptScore W3103126089C18199665 @default.
- W3103126089 hasConceptScore W3103126089C192562407 @default.
- W3103126089 hasConceptScore W3103126089C2524010 @default.
- W3103126089 hasConceptScore W3103126089C2777345500 @default.
- W3103126089 hasConceptScore W3103126089C28855332 @default.
- W3103126089 hasConceptScore W3103126089C33332235 @default.
- W3103126089 hasConceptScore W3103126089C33923547 @default.
- W3103126089 hasConceptScore W3103126089C37914503 @default.
- W3103126089 hasConceptScore W3103126089C42704618 @default.
- W3103126089 hasConceptScore W3103126089C57691317 @default.
- W3103126089 hasConceptScore W3103126089C62520636 @default.
- W3103126089 hasConceptScore W3103126089C97355855 @default.
- W3103126089 hasConceptScore W3103126089C98214594 @default.
- W3103126089 hasConceptScore W3103126089C99844830 @default.