Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103145364> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3103145364 abstract "Emojis can be seen as a visual language inserted in texts to express emotions, attitudes, and situations. It is widely used in computer-mediated communication, e.g., video comments. The emojis can express more detailed information beyond text information, and their usage can improve interlocutors' communication efficiency and emotions. The latest advances in natural language processing and deep learning have made it possible for chatbots to automatically add emojis in their dialogue. Precisely predicting emojis to be added is very challenging, especially in the video comments, where the use of emojis is complex, subtle, and associated with the cultural characteristics of video genres, e.g., anime and dancing. In this article, we first construct a benchmark dataset Bilibili comments dataset with more than 3.9 million comments that contain emojis in the video-sharing website Bilibili and then statistically analyze features of emoji's usage of video genre, comment content, and where an emoji appears in a sentence. According to the analyzed results and the gated recurrent unit (GRU) neural network, we propose a novel model of genre-based multitask GRU (GM-GRU) and its attention-added edition (GM- GRU+) to predict an emoji's category and position in a video comment. Our experiment and evaluation show that the proposed method can significantly increase the accuracy of predicted emojis for video comments." @default.
- W3103145364 created "2020-11-23" @default.
- W3103145364 creator A5016969134 @default.
- W3103145364 creator A5024436877 @default.
- W3103145364 creator A5039736283 @default.
- W3103145364 date "2020-08-01" @default.
- W3103145364 modified "2023-10-12" @default.
- W3103145364 title "Genre-based Emoji Usage Analysis and Prediction in Video Comments" @default.
- W3103145364 cites W1983440957 @default.
- W3103145364 cites W2014148101 @default.
- W3103145364 cites W2064675550 @default.
- W3103145364 cites W2076689724 @default.
- W3103145364 cites W2077587655 @default.
- W3103145364 cites W2153635508 @default.
- W3103145364 cites W2157331557 @default.
- W3103145364 cites W2593204350 @default.
- W3103145364 cites W2799187282 @default.
- W3103145364 cites W2806198715 @default.
- W3103145364 cites W2806732616 @default.
- W3103145364 cites W2925267545 @default.
- W3103145364 cites W2945690261 @default.
- W3103145364 cites W2963370879 @default.
- W3103145364 cites W2963468968 @default.
- W3103145364 cites W2963693353 @default.
- W3103145364 cites W2978816274 @default.
- W3103145364 cites W2985411437 @default.
- W3103145364 cites W2997932115 @default.
- W3103145364 cites W3008112160 @default.
- W3103145364 cites W3011987042 @default.
- W3103145364 cites W3021474408 @default.
- W3103145364 cites W1974371882 @default.
- W3103145364 doi "https://doi.org/10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00058" @default.
- W3103145364 hasPublicationYear "2020" @default.
- W3103145364 type Work @default.
- W3103145364 sameAs 3103145364 @default.
- W3103145364 citedByCount "2" @default.
- W3103145364 countsByYear W31031453642022 @default.
- W3103145364 countsByYear W31031453642023 @default.
- W3103145364 crossrefType "proceedings-article" @default.
- W3103145364 hasAuthorship W3103145364A5016969134 @default.
- W3103145364 hasAuthorship W3103145364A5024436877 @default.
- W3103145364 hasAuthorship W3103145364A5039736283 @default.
- W3103145364 hasConcept C13280743 @default.
- W3103145364 hasConcept C136764020 @default.
- W3103145364 hasConcept C154945302 @default.
- W3103145364 hasConcept C185798385 @default.
- W3103145364 hasConcept C199360897 @default.
- W3103145364 hasConcept C204321447 @default.
- W3103145364 hasConcept C205649164 @default.
- W3103145364 hasConcept C2777530160 @default.
- W3103145364 hasConcept C2779247141 @default.
- W3103145364 hasConcept C2780801425 @default.
- W3103145364 hasConcept C41008148 @default.
- W3103145364 hasConcept C49774154 @default.
- W3103145364 hasConcept C518677369 @default.
- W3103145364 hasConceptScore W3103145364C13280743 @default.
- W3103145364 hasConceptScore W3103145364C136764020 @default.
- W3103145364 hasConceptScore W3103145364C154945302 @default.
- W3103145364 hasConceptScore W3103145364C185798385 @default.
- W3103145364 hasConceptScore W3103145364C199360897 @default.
- W3103145364 hasConceptScore W3103145364C204321447 @default.
- W3103145364 hasConceptScore W3103145364C205649164 @default.
- W3103145364 hasConceptScore W3103145364C2777530160 @default.
- W3103145364 hasConceptScore W3103145364C2779247141 @default.
- W3103145364 hasConceptScore W3103145364C2780801425 @default.
- W3103145364 hasConceptScore W3103145364C41008148 @default.
- W3103145364 hasConceptScore W3103145364C49774154 @default.
- W3103145364 hasConceptScore W3103145364C518677369 @default.
- W3103145364 hasFunder F4320334764 @default.
- W3103145364 hasLocation W31031453641 @default.
- W3103145364 hasOpenAccess W3103145364 @default.
- W3103145364 hasPrimaryLocation W31031453641 @default.
- W3103145364 hasRelatedWork W112744582 @default.
- W3103145364 hasRelatedWork W1485630101 @default.
- W3103145364 hasRelatedWork W159132833 @default.
- W3103145364 hasRelatedWork W2030250808 @default.
- W3103145364 hasRelatedWork W2355862304 @default.
- W3103145364 hasRelatedWork W2356108042 @default.
- W3103145364 hasRelatedWork W2498017833 @default.
- W3103145364 hasRelatedWork W2748952813 @default.
- W3103145364 hasRelatedWork W2997778406 @default.
- W3103145364 hasRelatedWork W4214542829 @default.
- W3103145364 isParatext "false" @default.
- W3103145364 isRetracted "false" @default.
- W3103145364 magId "3103145364" @default.
- W3103145364 workType "article" @default.