Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103175042> ?p ?o ?g. }
- W3103175042 abstract "Abstract Brain networks and the neural dynamics that unfold upon them are of great interest across the many scales of systems neuroscience. The tools of inverse modelling provide a way of both constraining and selecting models of large scale brain networks from empirical data. Such models have the potential to yield broad theoretical insights in the understanding of the physiological processes behind the integration and segregation of activity in the brain. In order to make inverse modelling computationally tractable, simplifying model assumptions have often been adopted that appeal to steady-state approximations to neural dynamics and thus prevent the investigation of stochastic or intermittent dynamics such as gamma or beta burst activity. In this work we describe a framework that uses the Approximate Bayesian Computation (ABC) algorithm for the inversion of neural models that can flexibly represent any statistical feature of empirically recorded data and eschew the need to assume a locally linearized system. Further, we demonstrate how Bayesian model comparison can be applied to fitted models to enable the selection of competing hypotheses regarding the causes of neural data. This work establishes a validation of the procedures by testing for both the face validity (i.e. the ability to identify the original model that has generated the observed data) and predictive validity (i.e. the consistency of the parameter estimation across multiple realizations of the same data). From the validation and example applications presented here we conclude that the proposed framework provides a novel opportunity to researchers aiming to explain how complex brain dynamics emerge from neural circuits." @default.
- W3103175042 created "2020-11-23" @default.
- W3103175042 creator A5005404659 @default.
- W3103175042 creator A5030160648 @default.
- W3103175042 creator A5038948118 @default.
- W3103175042 creator A5041205424 @default.
- W3103175042 creator A5070655016 @default.
- W3103175042 date "2019-09-30" @default.
- W3103175042 modified "2023-09-27" @default.
- W3103175042 title "Model Based Inference of Large Scale Brain Networks with Approximate Bayesian Computation" @default.
- W3103175042 cites W1510554078 @default.
- W3103175042 cites W1552946839 @default.
- W3103175042 cites W1603307924 @default.
- W3103175042 cites W1854348894 @default.
- W3103175042 cites W1967285334 @default.
- W3103175042 cites W1983192672 @default.
- W3103175042 cites W1985082033 @default.
- W3103175042 cites W1985220467 @default.
- W3103175042 cites W1998378660 @default.
- W3103175042 cites W2015822010 @default.
- W3103175042 cites W2020175915 @default.
- W3103175042 cites W2020684750 @default.
- W3103175042 cites W2028590620 @default.
- W3103175042 cites W2032215616 @default.
- W3103175042 cites W2032358302 @default.
- W3103175042 cites W2032616735 @default.
- W3103175042 cites W2044227058 @default.
- W3103175042 cites W2052195764 @default.
- W3103175042 cites W2060588252 @default.
- W3103175042 cites W2064826007 @default.
- W3103175042 cites W2070765152 @default.
- W3103175042 cites W2073806962 @default.
- W3103175042 cites W2090509486 @default.
- W3103175042 cites W2096935768 @default.
- W3103175042 cites W2099652807 @default.
- W3103175042 cites W2100219975 @default.
- W3103175042 cites W2101091363 @default.
- W3103175042 cites W2103485732 @default.
- W3103175042 cites W2113257799 @default.
- W3103175042 cites W2116416291 @default.
- W3103175042 cites W2116647777 @default.
- W3103175042 cites W2121018413 @default.
- W3103175042 cites W2129224421 @default.
- W3103175042 cites W2131331011 @default.
- W3103175042 cites W2135267747 @default.
- W3103175042 cites W2139812092 @default.
- W3103175042 cites W2141716990 @default.
- W3103175042 cites W2146620998 @default.
- W3103175042 cites W2150847325 @default.
- W3103175042 cites W2152246075 @default.
- W3103175042 cites W2153234270 @default.
- W3103175042 cites W2164568806 @default.
- W3103175042 cites W2165269925 @default.
- W3103175042 cites W2166215379 @default.
- W3103175042 cites W2171601518 @default.
- W3103175042 cites W2219596751 @default.
- W3103175042 cites W2274286444 @default.
- W3103175042 cites W2590144118 @default.
- W3103175042 cites W2727234432 @default.
- W3103175042 cites W2739540458 @default.
- W3103175042 cites W2754925485 @default.
- W3103175042 cites W2885176719 @default.
- W3103175042 cites W2889776748 @default.
- W3103175042 cites W2939061197 @default.
- W3103175042 cites W2951401594 @default.
- W3103175042 cites W2952526539 @default.
- W3103175042 cites W2962900370 @default.
- W3103175042 cites W3012627763 @default.
- W3103175042 cites W3016573911 @default.
- W3103175042 cites W4236697647 @default.
- W3103175042 cites W4241861175 @default.
- W3103175042 cites W4255582690 @default.
- W3103175042 doi "https://doi.org/10.1101/785568" @default.
- W3103175042 hasPublicationYear "2019" @default.
- W3103175042 type Work @default.
- W3103175042 sameAs 3103175042 @default.
- W3103175042 citedByCount "1" @default.
- W3103175042 countsByYear W31031750422020 @default.
- W3103175042 crossrefType "posted-content" @default.
- W3103175042 hasAuthorship W3103175042A5005404659 @default.
- W3103175042 hasAuthorship W3103175042A5030160648 @default.
- W3103175042 hasAuthorship W3103175042A5038948118 @default.
- W3103175042 hasAuthorship W3103175042A5041205424 @default.
- W3103175042 hasAuthorship W3103175042A5070655016 @default.
- W3103175042 hasBestOaLocation W31031750421 @default.
- W3103175042 hasConcept C107673813 @default.
- W3103175042 hasConcept C11413529 @default.
- W3103175042 hasConcept C119857082 @default.
- W3103175042 hasConcept C121332964 @default.
- W3103175042 hasConcept C154945302 @default.
- W3103175042 hasConcept C160234255 @default.
- W3103175042 hasConcept C2776214188 @default.
- W3103175042 hasConcept C2776436953 @default.
- W3103175042 hasConcept C2778755073 @default.
- W3103175042 hasConcept C2779377595 @default.
- W3103175042 hasConcept C3832189 @default.
- W3103175042 hasConcept C41008148 @default.
- W3103175042 hasConcept C45374587 @default.
- W3103175042 hasConcept C50644808 @default.
- W3103175042 hasConcept C62520636 @default.