Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103176522> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3103176522 endingPage "104061" @default.
- W3103176522 startingPage "104061" @default.
- W3103176522 abstract "Deep learning has recently been shown to provide great achievement to the traveling salesman problem (TSP) on the Euclidean graphs. These methods usually fully represent the graph by a set of coordinates, and then captures graph information from the coordinates to generate the solution. The TSP on arbitrary symmetric graphs models more realistic applications where the working graphs maybe sparse, or the distance between points on the graphs may not satisfy the triangle inequality. When prior learning-based methods being applied to the TSP on arbitrary symmetric graphs, they are not capable to capture graph features that are beneficial to produce near-optimal solutions. Moreover, they suffer from serious exploration problems. This paper proposes a bidirectional graph neural network (BGNN) for the arbitrary symmetric TSP. The network learns to produce the next city to visit sequentially by imitation learning. The bidirectional message passing layer is designed as the most important component of BGNN. It is able to encode graphs based on edges and partial solutions. By this way, the proposed approach is much possible to construct near-optimal solutions for the TSP on arbitrary symmetric graphs, and it is able to be combined with informed search to further improve performance." @default.
- W3103176522 created "2020-11-23" @default.
- W3103176522 creator A5012649937 @default.
- W3103176522 creator A5012961763 @default.
- W3103176522 creator A5020678504 @default.
- W3103176522 creator A5030898736 @default.
- W3103176522 creator A5036266768 @default.
- W3103176522 creator A5052637103 @default.
- W3103176522 date "2021-01-01" @default.
- W3103176522 modified "2023-10-14" @default.
- W3103176522 title "A bidirectional graph neural network for traveling salesman problems on arbitrary symmetric graphs" @default.
- W3103176522 cites W2017708378 @default.
- W3103176522 cites W2039568841 @default.
- W3103176522 cites W2050819731 @default.
- W3103176522 cites W2064675550 @default.
- W3103176522 cites W2165142526 @default.
- W3103176522 cites W2262276395 @default.
- W3103176522 cites W2612872092 @default.
- W3103176522 cites W2766447205 @default.
- W3103176522 cites W2956015669 @default.
- W3103176522 cites W2979622390 @default.
- W3103176522 cites W2992174520 @default.
- W3103176522 doi "https://doi.org/10.1016/j.engappai.2020.104061" @default.
- W3103176522 hasPublicationYear "2021" @default.
- W3103176522 type Work @default.
- W3103176522 sameAs 3103176522 @default.
- W3103176522 citedByCount "13" @default.
- W3103176522 countsByYear W31031765222021 @default.
- W3103176522 countsByYear W31031765222022 @default.
- W3103176522 countsByYear W31031765222023 @default.
- W3103176522 crossrefType "journal-article" @default.
- W3103176522 hasAuthorship W3103176522A5012649937 @default.
- W3103176522 hasAuthorship W3103176522A5012961763 @default.
- W3103176522 hasAuthorship W3103176522A5020678504 @default.
- W3103176522 hasAuthorship W3103176522A5030898736 @default.
- W3103176522 hasAuthorship W3103176522A5036266768 @default.
- W3103176522 hasAuthorship W3103176522A5052637103 @default.
- W3103176522 hasConcept C11413529 @default.
- W3103176522 hasConcept C126255220 @default.
- W3103176522 hasConcept C129782007 @default.
- W3103176522 hasConcept C132525143 @default.
- W3103176522 hasConcept C175859090 @default.
- W3103176522 hasConcept C2524010 @default.
- W3103176522 hasConcept C33923547 @default.
- W3103176522 hasConcept C41008148 @default.
- W3103176522 hasConcept C80444323 @default.
- W3103176522 hasConceptScore W3103176522C11413529 @default.
- W3103176522 hasConceptScore W3103176522C126255220 @default.
- W3103176522 hasConceptScore W3103176522C129782007 @default.
- W3103176522 hasConceptScore W3103176522C132525143 @default.
- W3103176522 hasConceptScore W3103176522C175859090 @default.
- W3103176522 hasConceptScore W3103176522C2524010 @default.
- W3103176522 hasConceptScore W3103176522C33923547 @default.
- W3103176522 hasConceptScore W3103176522C41008148 @default.
- W3103176522 hasConceptScore W3103176522C80444323 @default.
- W3103176522 hasFunder F4320320709 @default.
- W3103176522 hasFunder F4320321001 @default.
- W3103176522 hasFunder F4320322725 @default.
- W3103176522 hasFunder F4320335787 @default.
- W3103176522 hasLocation W31031765221 @default.
- W3103176522 hasOpenAccess W3103176522 @default.
- W3103176522 hasPrimaryLocation W31031765221 @default.
- W3103176522 hasRelatedWork W1525389557 @default.
- W3103176522 hasRelatedWork W2046552997 @default.
- W3103176522 hasRelatedWork W2054495636 @default.
- W3103176522 hasRelatedWork W2164188042 @default.
- W3103176522 hasRelatedWork W2359992618 @default.
- W3103176522 hasRelatedWork W2361554335 @default.
- W3103176522 hasRelatedWork W2495211334 @default.
- W3103176522 hasRelatedWork W3157689847 @default.
- W3103176522 hasRelatedWork W4306878646 @default.
- W3103176522 hasRelatedWork W46171904 @default.
- W3103176522 hasVolume "97" @default.
- W3103176522 isParatext "false" @default.
- W3103176522 isRetracted "false" @default.
- W3103176522 magId "3103176522" @default.
- W3103176522 workType "article" @default.