Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103181734> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3103181734 endingPage "5092" @default.
- W3103181734 startingPage "5081" @default.
- W3103181734 abstract "To make decisions based on a model fit with auto-encoding variational Bayes (AEVB), practitioners often let the variational distribution serve as a surrogate for the posterior distribution. This approach yields biased estimates of the expected risk, and therefore leads to poor decisions for two reasons. First, the model fit with AEVB may not equal the underlying data distribution. Second, the variational distribution may not equal the posterior distribution under the fitted model. We explore how fitting the variational distribution based on several objective functions other than the ELBO, while continuing to fit the generative model based on the ELBO, affects the quality of downstream decisions. For the probabilistic principal component analysis model, we investigate how importance sampling error, as well as the bias of the model parameter estimates, varies across several approximate posteriors when used as proposal distributions. Our theoretical results suggest that a posterior approximation distinct from the variational distribution should be used for making decisions. Motivated by these theoretical results, we propose learning several approximate proposals for the best model and combining them using multiple importance sampling for decision-making. In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing. In this challenging instance of multiple hypothesis testing, our proposed approach surpasses the current state of the art." @default.
- W3103181734 created "2020-11-23" @default.
- W3103181734 creator A5021527800 @default.
- W3103181734 creator A5026299103 @default.
- W3103181734 creator A5049812527 @default.
- W3103181734 creator A5060925308 @default.
- W3103181734 creator A5063519257 @default.
- W3103181734 date "2020-01-01" @default.
- W3103181734 modified "2023-09-23" @default.
- W3103181734 title "Decision-Making with Auto-Encoding Variational Bayes" @default.
- W3103181734 hasPublicationYear "2020" @default.
- W3103181734 type Work @default.
- W3103181734 sameAs 3103181734 @default.
- W3103181734 citedByCount "0" @default.
- W3103181734 crossrefType "proceedings-article" @default.
- W3103181734 hasAuthorship W3103181734A5021527800 @default.
- W3103181734 hasAuthorship W3103181734A5026299103 @default.
- W3103181734 hasAuthorship W3103181734A5049812527 @default.
- W3103181734 hasAuthorship W3103181734A5060925308 @default.
- W3103181734 hasAuthorship W3103181734A5063519257 @default.
- W3103181734 hasConcept C106131492 @default.
- W3103181734 hasConcept C107673813 @default.
- W3103181734 hasConcept C110121322 @default.
- W3103181734 hasConcept C11413529 @default.
- W3103181734 hasConcept C119857082 @default.
- W3103181734 hasConcept C125411270 @default.
- W3103181734 hasConcept C126255220 @default.
- W3103181734 hasConcept C134306372 @default.
- W3103181734 hasConcept C140779682 @default.
- W3103181734 hasConcept C154945302 @default.
- W3103181734 hasConcept C167966045 @default.
- W3103181734 hasConcept C177769412 @default.
- W3103181734 hasConcept C207201462 @default.
- W3103181734 hasConcept C31972630 @default.
- W3103181734 hasConcept C33923547 @default.
- W3103181734 hasConcept C39890363 @default.
- W3103181734 hasConcept C41008148 @default.
- W3103181734 hasConcept C49937458 @default.
- W3103181734 hasConcept C57830394 @default.
- W3103181734 hasConceptScore W3103181734C106131492 @default.
- W3103181734 hasConceptScore W3103181734C107673813 @default.
- W3103181734 hasConceptScore W3103181734C110121322 @default.
- W3103181734 hasConceptScore W3103181734C11413529 @default.
- W3103181734 hasConceptScore W3103181734C119857082 @default.
- W3103181734 hasConceptScore W3103181734C125411270 @default.
- W3103181734 hasConceptScore W3103181734C126255220 @default.
- W3103181734 hasConceptScore W3103181734C134306372 @default.
- W3103181734 hasConceptScore W3103181734C140779682 @default.
- W3103181734 hasConceptScore W3103181734C154945302 @default.
- W3103181734 hasConceptScore W3103181734C167966045 @default.
- W3103181734 hasConceptScore W3103181734C177769412 @default.
- W3103181734 hasConceptScore W3103181734C207201462 @default.
- W3103181734 hasConceptScore W3103181734C31972630 @default.
- W3103181734 hasConceptScore W3103181734C33923547 @default.
- W3103181734 hasConceptScore W3103181734C39890363 @default.
- W3103181734 hasConceptScore W3103181734C41008148 @default.
- W3103181734 hasConceptScore W3103181734C49937458 @default.
- W3103181734 hasConceptScore W3103181734C57830394 @default.
- W3103181734 hasLocation W31031817341 @default.
- W3103181734 hasOpenAccess W3103181734 @default.
- W3103181734 hasPrimaryLocation W31031817341 @default.
- W3103181734 hasRelatedWork W1563348973 @default.
- W3103181734 hasRelatedWork W1644842259 @default.
- W3103181734 hasRelatedWork W1828441782 @default.
- W3103181734 hasRelatedWork W2098487665 @default.
- W3103181734 hasRelatedWork W2139234986 @default.
- W3103181734 hasRelatedWork W2292840578 @default.
- W3103181734 hasRelatedWork W2556501520 @default.
- W3103181734 hasRelatedWork W2770381654 @default.
- W3103181734 hasRelatedWork W2806149891 @default.
- W3103181734 hasRelatedWork W2890141283 @default.
- W3103181734 hasRelatedWork W2943608090 @default.
- W3103181734 hasRelatedWork W2949267892 @default.
- W3103181734 hasRelatedWork W2963145887 @default.
- W3103181734 hasRelatedWork W3094065920 @default.
- W3103181734 hasRelatedWork W3117690908 @default.
- W3103181734 hasRelatedWork W3134624650 @default.
- W3103181734 hasRelatedWork W3154615872 @default.
- W3103181734 hasRelatedWork W2099374219 @default.
- W3103181734 hasRelatedWork W3104799747 @default.
- W3103181734 hasRelatedWork W3126972261 @default.
- W3103181734 hasVolume "33" @default.
- W3103181734 isParatext "false" @default.
- W3103181734 isRetracted "false" @default.
- W3103181734 magId "3103181734" @default.
- W3103181734 workType "article" @default.