Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103182327> ?p ?o ?g. }
- W3103182327 endingPage "2959" @default.
- W3103182327 startingPage "2926" @default.
- W3103182327 abstract "Dual to the usual noisy channel coding problem, where a noisy (classical or quantum) channel is used to simulate a noiseless one, reverse Shannon theorems concern the use of noiseless channels to simulate noisy ones, and more generally the use of one noisy channel to simulate another. For channels of nonzero capacity, this simulation is always possible, but for it to be efficient, auxiliary resources of the proper kind and amount are generally required. In the classical case, shared randomness between sender and receiver is a sufficient auxiliary resource, regardless of the nature of the source, but in the quantum case, the requisite auxiliary resources for efficient simulation depend on both the channel being simulated, and the source from which the channel inputs are coming. For tensor power sources (the quantum generalization of classical memoryless sources), entanglement in the form of standard ebits (maximally entangled pairs of qubits) is sufficient, but for general sources, which may be arbitrarily correlated or entangled across channel inputs, additional resources, such as entanglement-embezzling states or backward communication, are generally needed. Combining existing and new results, we establish the amounts of communication and auxiliary resources needed in both the classical and quantum cases, the tradeoffs among them, and the loss of simulation efficiency when auxiliary resources are absent or insufficient. In particular, we find a new single-letter expression for the excess forward communication cost of coherent feedback simulations of quantum channels (i.e., simulations in which the sender retains what would escape into the environment in an ordinary simulation), on nontensor-power sources in the presence of unlimited ebits but no other auxiliary resource. Our results on tensor power sources establish a strong converse to the entanglement-assisted capacity theorem." @default.
- W3103182327 created "2020-11-23" @default.
- W3103182327 creator A5008766821 @default.
- W3103182327 creator A5010503984 @default.
- W3103182327 creator A5020744800 @default.
- W3103182327 creator A5043668447 @default.
- W3103182327 creator A5053166798 @default.
- W3103182327 date "2014-05-01" @default.
- W3103182327 modified "2023-10-16" @default.
- W3103182327 title "The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels" @default.
- W3103182327 cites W1566190027 @default.
- W3103182327 cites W1602420091 @default.
- W3103182327 cites W1607037393 @default.
- W3103182327 cites W1621050367 @default.
- W3103182327 cites W1753743211 @default.
- W3103182327 cites W1966698790 @default.
- W3103182327 cites W1968623765 @default.
- W3103182327 cites W1974967019 @default.
- W3103182327 cites W1978553093 @default.
- W3103182327 cites W1989250891 @default.
- W3103182327 cites W1995875735 @default.
- W3103182327 cites W2000180194 @default.
- W3103182327 cites W2002923615 @default.
- W3103182327 cites W2003954610 @default.
- W3103182327 cites W2005442500 @default.
- W3103182327 cites W2007616314 @default.
- W3103182327 cites W2009424046 @default.
- W3103182327 cites W2010138343 @default.
- W3103182327 cites W2010371295 @default.
- W3103182327 cites W2012909252 @default.
- W3103182327 cites W2013676880 @default.
- W3103182327 cites W2015254684 @default.
- W3103182327 cites W2017282821 @default.
- W3103182327 cites W2020725861 @default.
- W3103182327 cites W2031420654 @default.
- W3103182327 cites W2033909248 @default.
- W3103182327 cites W2037772232 @default.
- W3103182327 cites W2049471987 @default.
- W3103182327 cites W2053861514 @default.
- W3103182327 cites W2054998337 @default.
- W3103182327 cites W2059575647 @default.
- W3103182327 cites W2070863527 @default.
- W3103182327 cites W2071968733 @default.
- W3103182327 cites W2087464967 @default.
- W3103182327 cites W2089610467 @default.
- W3103182327 cites W2090644485 @default.
- W3103182327 cites W2096599146 @default.
- W3103182327 cites W2097895838 @default.
- W3103182327 cites W2099111195 @default.
- W3103182327 cites W2100274816 @default.
- W3103182327 cites W2102077152 @default.
- W3103182327 cites W2105886659 @default.
- W3103182327 cites W2106308393 @default.
- W3103182327 cites W2108777864 @default.
- W3103182327 cites W2114473497 @default.
- W3103182327 cites W2115328106 @default.
- W3103182327 cites W2123142728 @default.
- W3103182327 cites W2134348739 @default.
- W3103182327 cites W2136522857 @default.
- W3103182327 cites W2141140927 @default.
- W3103182327 cites W2141432745 @default.
- W3103182327 cites W2144796586 @default.
- W3103182327 cites W2146720213 @default.
- W3103182327 cites W2148012706 @default.
- W3103182327 cites W2153396718 @default.
- W3103182327 cites W2156965310 @default.
- W3103182327 cites W2162635854 @default.
- W3103182327 cites W2163261931 @default.
- W3103182327 cites W2166792754 @default.
- W3103182327 cites W2166857777 @default.
- W3103182327 cites W2293830652 @default.
- W3103182327 cites W3099282663 @default.
- W3103182327 cites W3099569555 @default.
- W3103182327 cites W3099674169 @default.
- W3103182327 cites W3099874109 @default.
- W3103182327 cites W3100514473 @default.
- W3103182327 cites W3100803127 @default.
- W3103182327 cites W3102125882 @default.
- W3103182327 cites W3102821223 @default.
- W3103182327 cites W3102855587 @default.
- W3103182327 cites W3103812487 @default.
- W3103182327 cites W3104200005 @default.
- W3103182327 cites W3124160004 @default.
- W3103182327 cites W4233413206 @default.
- W3103182327 doi "https://doi.org/10.1109/tit.2014.2309968" @default.
- W3103182327 hasPublicationYear "2014" @default.
- W3103182327 type Work @default.
- W3103182327 sameAs 3103182327 @default.
- W3103182327 citedByCount "148" @default.
- W3103182327 countsByYear W31031823272012 @default.
- W3103182327 countsByYear W31031823272013 @default.
- W3103182327 countsByYear W31031823272014 @default.
- W3103182327 countsByYear W31031823272015 @default.
- W3103182327 countsByYear W31031823272016 @default.
- W3103182327 countsByYear W31031823272017 @default.
- W3103182327 countsByYear W31031823272018 @default.
- W3103182327 countsByYear W31031823272019 @default.
- W3103182327 countsByYear W31031823272020 @default.