Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103182488> ?p ?o ?g. }
- W3103182488 endingPage "8808" @default.
- W3103182488 startingPage "8808" @default.
- W3103182488 abstract "Folate-mediated one-carbon (1C) metabolism is a major target of many therapies in human diseases. Studies have focused on the metabolism of serine 3-carbon as it serves as a major source for 1C units. The serine 3-carbon enters the mitochondria transferred by folate cofactors and eventually converted to formate and serves as a major building block for cytosolic 1C metabolism. Abnormal glycine metabolism has been reported in many human pathological conditions. The mitochondrial glycine cleavage system (GCS) catalyzes glycine degradation to CO2 and ammonium, while tetrahydrofolate (THF) is converted into 5,10-methylene-THF. GCS accounts for a substantial proportion of whole-body glycine flux in humans, yet the particular metabolic route of glycine 2-carbon recycled from GCS during mitochondria glycine decarboxylation in hepatic or bone marrow 1C metabolism is not fully investigated, due to the limited accessibility of human tissues. Labeled glycine at 2-carbon was given to humans and primary cells in previous studies for investigating its incorporations into purines, its interconversion with serine, or the CO2 production in the mitochondria. Less is known on the metabolic fate of the glycine 2-carbon recycled from the GCS; hence, a model system tracing its metabolic fate would help in this regard. We took the direct approach of isotopic labeling to further explore the in vitro and in vivo metabolic fate of the 2-carbon from [2-13C]glycine and [2-13C]serine. As the 2-carbon of glycine and serine is decarboxylated and catabolized via the GCS, the original 13C-labeled 2-carbon is transferred to THF and yield methyleneTHF in the mitochondria. In human hepatoma cell-lines, 2-carbon from glycine was found to be incorporated into deoxythymidine (dTMP, dT + 1), M + 3 species of purines (deoxyadenine, dA and deoxyguanine, dG), and methionine (Met + 1). In healthy mice, incorporation of GCS-derived formate from glycine 2-carbon was found in serine (Ser + 2 via cytosolic serine hydroxy methyl transferase), methionine, dTMP, and methylcytosine (mC + 1) in bone marrow DNA. In these experiments, labeled glycine 2-carbon directly incorporates into Ser + 1, A + 2, and G + 2 (at C2 and C8 of purine) in the cytosol. It is noteworthy that since the serine 3-carbon is unlabeled in these experiments, the isotopic enrichments in dT + 1, Ser + 2, dA + 3, dG + 3, and Met + 1 solely come from the 2-carbon of glycine/serine recycled from GCS, re-enters the cytosolic 1C metabolism as formate, and then being used for cytosolic syntheses of serine, dTMP, purine (M + 3) and methionine. Taken together, we established model systems and successfully traced the metabolic fate of mitochondrial GCS-derived formate from glycine 2-carbon in vitro and in vivo. Nutritional supply significantly alters formate generation from GCS. More GCS-derived formate was used in hepatic serine and methionine syntheses, whereas more GCS-derived formate was used in dTMP synthesis in the bone marrow, indicating that the utilization and partitioning of GCS-derived 1C unit are tissue-specific. These approaches enable better understanding concerning the utilization of 1C moiety generated from mitochondrial GCS that can help to further elucidate the role of GCS in human disease development and progression in future applications. More studies on GCS using these approaches are underway." @default.
- W3103182488 created "2020-11-23" @default.
- W3103182488 creator A5005829876 @default.
- W3103182488 creator A5021539473 @default.
- W3103182488 creator A5022239499 @default.
- W3103182488 creator A5034224483 @default.
- W3103182488 creator A5034662677 @default.
- W3103182488 creator A5042238510 @default.
- W3103182488 creator A5061768251 @default.
- W3103182488 date "2020-11-20" @default.
- W3103182488 modified "2023-10-17" @default.
- W3103182488 title "Tracing Metabolic Fate of Mitochondrial Glycine Cleavage System Derived Formate In Vitro and In Vivo" @default.
- W3103182488 cites W1521129684 @default.
- W3103182488 cites W187623631 @default.
- W3103182488 cites W1902646151 @default.
- W3103182488 cites W1934661671 @default.
- W3103182488 cites W1943036748 @default.
- W3103182488 cites W1976055256 @default.
- W3103182488 cites W1976949788 @default.
- W3103182488 cites W1980920372 @default.
- W3103182488 cites W1989551182 @default.
- W3103182488 cites W1990453591 @default.
- W3103182488 cites W1991764719 @default.
- W3103182488 cites W2000144783 @default.
- W3103182488 cites W2007827633 @default.
- W3103182488 cites W2013865066 @default.
- W3103182488 cites W2019229623 @default.
- W3103182488 cites W2021058044 @default.
- W3103182488 cites W2023476087 @default.
- W3103182488 cites W2039012807 @default.
- W3103182488 cites W2055435449 @default.
- W3103182488 cites W2056974877 @default.
- W3103182488 cites W2061974399 @default.
- W3103182488 cites W2073793435 @default.
- W3103182488 cites W2076021206 @default.
- W3103182488 cites W2083574636 @default.
- W3103182488 cites W2087432830 @default.
- W3103182488 cites W2091598977 @default.
- W3103182488 cites W2098074485 @default.
- W3103182488 cites W2100282685 @default.
- W3103182488 cites W2108879983 @default.
- W3103182488 cites W2112358926 @default.
- W3103182488 cites W2125550489 @default.
- W3103182488 cites W2127116298 @default.
- W3103182488 cites W2142418974 @default.
- W3103182488 cites W2145912883 @default.
- W3103182488 cites W2150399183 @default.
- W3103182488 cites W2159588477 @default.
- W3103182488 cites W2160601806 @default.
- W3103182488 cites W2183983923 @default.
- W3103182488 cites W2232634287 @default.
- W3103182488 cites W2317437973 @default.
- W3103182488 cites W2323026550 @default.
- W3103182488 cites W2330013763 @default.
- W3103182488 cites W2405069786 @default.
- W3103182488 cites W2410373012 @default.
- W3103182488 cites W2520894026 @default.
- W3103182488 cites W2610368603 @default.
- W3103182488 cites W2766147673 @default.
- W3103182488 cites W2792210661 @default.
- W3103182488 cites W2906802734 @default.
- W3103182488 cites W2908027303 @default.
- W3103182488 cites W2965191969 @default.
- W3103182488 cites W2975149816 @default.
- W3103182488 cites W2984697931 @default.
- W3103182488 doi "https://doi.org/10.3390/ijms21228808" @default.
- W3103182488 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7699879" @default.
- W3103182488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33233834" @default.
- W3103182488 hasPublicationYear "2020" @default.
- W3103182488 type Work @default.
- W3103182488 sameAs 3103182488 @default.
- W3103182488 citedByCount "13" @default.
- W3103182488 countsByYear W31031824882021 @default.
- W3103182488 countsByYear W31031824882022 @default.
- W3103182488 countsByYear W31031824882023 @default.
- W3103182488 crossrefType "journal-article" @default.
- W3103182488 hasAuthorship W3103182488A5005829876 @default.
- W3103182488 hasAuthorship W3103182488A5021539473 @default.
- W3103182488 hasAuthorship W3103182488A5022239499 @default.
- W3103182488 hasAuthorship W3103182488A5034224483 @default.
- W3103182488 hasAuthorship W3103182488A5034662677 @default.
- W3103182488 hasAuthorship W3103182488A5042238510 @default.
- W3103182488 hasAuthorship W3103182488A5061768251 @default.
- W3103182488 hasBestOaLocation W31031824881 @default.
- W3103182488 hasConcept C150903083 @default.
- W3103182488 hasConcept C160560785 @default.
- W3103182488 hasConcept C181199279 @default.
- W3103182488 hasConcept C185592680 @default.
- W3103182488 hasConcept C192989942 @default.
- W3103182488 hasConcept C207001950 @default.
- W3103182488 hasConcept C2776414213 @default.
- W3103182488 hasConcept C2777756961 @default.
- W3103182488 hasConcept C2779932687 @default.
- W3103182488 hasConcept C515207424 @default.
- W3103182488 hasConcept C55493867 @default.
- W3103182488 hasConcept C62231903 @default.
- W3103182488 hasConcept C86803240 @default.
- W3103182488 hasConceptScore W3103182488C150903083 @default.