Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103188051> ?p ?o ?g. }
- W3103188051 endingPage "828" @default.
- W3103188051 startingPage "821" @default.
- W3103188051 abstract "<i>Context. <i/>The synchrotron-self Compton (SSC) radiation process is widely held to provide a close representation of the double peaked spectral energy distributions from BL Lac Objects (BL Lacs). This subclass of Active Galactic Nuclei is marked by non-thermal beamed radiations, highly variable on timescales of days or less. Their outbursts in the <i>γ<i/> rays relative to the optical/X rays might be surmised to be enhanced in BL Lacs as these photons are upscattered via the inverse Compton (IC) process.<i>Aims. <i/>From the observed correlations among the spectral parameters (peak frequencies, fluxes and curvature) during optical/X-ray variations we aim at predicting corresponding correlations in the <i>γ<i/>-ray band, and the actual relations between the <i>γ<i/>-ray and the X-ray variability consistent with the SSC emission process.<i>Methods. <i/>We start from the homogeneous single-zone SSC source model, with log-parabolic energies distributions of emitting electron as required by the X-ray data of many sources. We find relations among spectral parameters of the IC radiation in both the Thomson (for Low energy BL Lacs) and the Klein-Nishina regimes (mainly for High energy BL Lacs); whence we compute how variability is driven by a smooth increase of key source parameters, primarily the root mean square electron energy.<i>Results. <i/>In the Klein-Nishina regime the model predicts for HBLs lower inverse Compton fluxes relative to synchrotron, and milder <i>γ<i/>-ray relative to X-ray variations. Stronger <i>γ<i/>-ray flares observed in some HBLs like Mrk 501 are understood in terms of additional, smooth increases also of the emitting electron density. However, episodes of rapid flares as recently reported at TeV energies are beyond the reach of the single component SSC model with one dominant varying parameter. Furthermore, spectral correlations at variance with our predictions, as well as TeV emissions in LBL objects (like BL Lacertae itself) cannot be explained in terms of the simple HSZ SSC model, and in these cases the source may require additional electron populations in more elaborate structures like decelerated relativistic outflows or sub-jet scenarios.<i>Conclusions. <i/>We provide a comprehensive benchmark to straightforwardly gauge the capabilities and effectiveness of the SSC radiation process. The single component SSC source model in the Thomson regime turns out to be adequate for many LBL sources. In the mild Klein-Nishina regime it covers HBL sources undergoing variations driven by smooth increase of a number of source parameters. However, the simple model meets its limits with the fast/strong flares recently reported for a few sources in the TeV range; these clearly require sudden accelerations of emitting electrons in a second source component." @default.
- W3103188051 created "2020-11-23" @default.
- W3103188051 creator A5006696699 @default.
- W3103188051 creator A5010814445 @default.
- W3103188051 creator A5040181186 @default.
- W3103188051 creator A5065727790 @default.
- W3103188051 creator A5065913565 @default.
- W3103188051 creator A5066200759 @default.
- W3103188051 creator A5077474504 @default.
- W3103188051 date "2009-07-16" @default.
- W3103188051 modified "2023-10-15" @default.
- W3103188051 title "SSC radiation in BL Lacertae sources, the end of the tether" @default.
- W3103188051 cites W1548209730 @default.
- W3103188051 cites W1991136743 @default.
- W3103188051 cites W1995993679 @default.
- W3103188051 cites W2011229761 @default.
- W3103188051 cites W2023347320 @default.
- W3103188051 cites W2029677436 @default.
- W3103188051 cites W2030206684 @default.
- W3103188051 cites W2038367995 @default.
- W3103188051 cites W2049177115 @default.
- W3103188051 cites W2054923548 @default.
- W3103188051 cites W2068614195 @default.
- W3103188051 cites W2070078220 @default.
- W3103188051 cites W2071065321 @default.
- W3103188051 cites W2075628611 @default.
- W3103188051 cites W2088868638 @default.
- W3103188051 cites W2094357749 @default.
- W3103188051 cites W2098597426 @default.
- W3103188051 cites W2110359358 @default.
- W3103188051 cites W2127231013 @default.
- W3103188051 cites W2130030500 @default.
- W3103188051 cites W2140435052 @default.
- W3103188051 cites W2152242740 @default.
- W3103188051 cites W2162106564 @default.
- W3103188051 cites W2610478920 @default.
- W3103188051 cites W3098091163 @default.
- W3103188051 cites W3098168547 @default.
- W3103188051 cites W3098598729 @default.
- W3103188051 cites W3099692927 @default.
- W3103188051 cites W3100444423 @default.
- W3103188051 cites W3100819749 @default.
- W3103188051 cites W3101486113 @default.
- W3103188051 cites W3102248048 @default.
- W3103188051 cites W3102563564 @default.
- W3103188051 cites W3105071124 @default.
- W3103188051 cites W3105535499 @default.
- W3103188051 cites W4237629461 @default.
- W3103188051 cites W4298415333 @default.
- W3103188051 cites W4300537124 @default.
- W3103188051 doi "https://doi.org/10.1051/0004-6361/200912237" @default.
- W3103188051 hasPublicationYear "2009" @default.
- W3103188051 type Work @default.
- W3103188051 sameAs 3103188051 @default.
- W3103188051 citedByCount "43" @default.
- W3103188051 countsByYear W31031880512012 @default.
- W3103188051 countsByYear W31031880512013 @default.
- W3103188051 countsByYear W31031880512014 @default.
- W3103188051 countsByYear W31031880512015 @default.
- W3103188051 countsByYear W31031880512016 @default.
- W3103188051 countsByYear W31031880512017 @default.
- W3103188051 countsByYear W31031880512018 @default.
- W3103188051 countsByYear W31031880512019 @default.
- W3103188051 countsByYear W31031880512020 @default.
- W3103188051 countsByYear W31031880512021 @default.
- W3103188051 countsByYear W31031880512022 @default.
- W3103188051 countsByYear W31031880512023 @default.
- W3103188051 crossrefType "journal-article" @default.
- W3103188051 hasAuthorship W3103188051A5006696699 @default.
- W3103188051 hasAuthorship W3103188051A5010814445 @default.
- W3103188051 hasAuthorship W3103188051A5040181186 @default.
- W3103188051 hasAuthorship W3103188051A5065727790 @default.
- W3103188051 hasAuthorship W3103188051A5065913565 @default.
- W3103188051 hasAuthorship W3103188051A5066200759 @default.
- W3103188051 hasAuthorship W3103188051A5077474504 @default.
- W3103188051 hasBestOaLocation W31031880511 @default.
- W3103188051 hasConcept C100752510 @default.
- W3103188051 hasConcept C111717503 @default.
- W3103188051 hasConcept C120665830 @default.
- W3103188051 hasConcept C121332964 @default.
- W3103188051 hasConcept C147120987 @default.
- W3103188051 hasConcept C151730666 @default.
- W3103188051 hasConcept C153385146 @default.
- W3103188051 hasConcept C159317903 @default.
- W3103188051 hasConcept C16332341 @default.
- W3103188051 hasConcept C185544564 @default.
- W3103188051 hasConcept C207467116 @default.
- W3103188051 hasConcept C21368211 @default.
- W3103188051 hasConcept C2524010 @default.
- W3103188051 hasConcept C2779343474 @default.
- W3103188051 hasConcept C33923547 @default.
- W3103188051 hasConcept C44870925 @default.
- W3103188051 hasConcept C50425793 @default.
- W3103188051 hasConcept C61203554 @default.
- W3103188051 hasConcept C7910260 @default.
- W3103188051 hasConcept C86803240 @default.
- W3103188051 hasConcept C98444146 @default.
- W3103188051 hasConceptScore W3103188051C100752510 @default.