Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103200212> ?p ?o ?g. }
- W3103200212 endingPage "L9" @default.
- W3103200212 startingPage "L9" @default.
- W3103200212 abstract "Machine-learning (ML) algorithms will play a crucial role in studying the large datasets delivered by new facilities over the next decade and beyond. Here, we investigate the capabilities and limits of such methods in finding galaxies with brightness-variable active galactic nuclei (AGN). Specifically, we focus on an unsupervised method based on self-organizing maps (SOM) that we apply to a set of nonparametric variability estimators. This technique allows us to maintain domain knowledge and systematics control while using all the advantages of ML. Using simulated light curves that match the noise properties of observations, we verify the potential of this algorithm in identifying variable light curves. We then apply our method to a sample of ~8300 WISE color-selected AGN candidates in Stripe 82, in which we have identified variable light curves by visual inspection. We find that with ML we can identify these variable classified AGN with a purity of 86% and a completeness of 66%, a performance that is comparable to that of more commonly used supervised deep-learning neural networks. The advantage of the SOM framework is that it enables not only a robust identification of variable light curves in a given dataset, but it is also a tool to investigate correlations between physical parameters in multi-dimensional space - such as the link between AGN variability and the properties of their host galaxies. Finally, we note that our method can be applied to any time-sampled light curve (e.g., supernovae, exoplanets, pulsars, and other transient events)." @default.
- W3103200212 created "2020-11-23" @default.
- W3103200212 creator A5014484769 @default.
- W3103200212 creator A5048030159 @default.
- W3103200212 creator A5081052936 @default.
- W3103200212 creator A5089805698 @default.
- W3103200212 date "2019-08-06" @default.
- W3103200212 modified "2023-09-26" @default.
- W3103200212 title "How to Find Variable Active Galactic Nuclei with Machine Learning" @default.
- W3103200212 cites W1972726488 @default.
- W3103200212 cites W1973308346 @default.
- W3103200212 cites W1987456073 @default.
- W3103200212 cites W1990517717 @default.
- W3103200212 cites W1994041452 @default.
- W3103200212 cites W2015999186 @default.
- W3103200212 cites W2052937506 @default.
- W3103200212 cites W2082592033 @default.
- W3103200212 cites W2090459210 @default.
- W3103200212 cites W2090918013 @default.
- W3103200212 cites W2091306090 @default.
- W3103200212 cites W2097850441 @default.
- W3103200212 cites W2100867864 @default.
- W3103200212 cites W2105675864 @default.
- W3103200212 cites W2109553965 @default.
- W3103200212 cites W2162475780 @default.
- W3103200212 cites W2164271745 @default.
- W3103200212 cites W2165221235 @default.
- W3103200212 cites W2168912860 @default.
- W3103200212 cites W2184417792 @default.
- W3103200212 cites W2207069478 @default.
- W3103200212 cites W2292579160 @default.
- W3103200212 cites W2512265107 @default.
- W3103200212 cites W2555659879 @default.
- W3103200212 cites W2558972979 @default.
- W3103200212 cites W2593866733 @default.
- W3103200212 cites W2766575740 @default.
- W3103200212 cites W2895003665 @default.
- W3103200212 cites W2896174860 @default.
- W3103200212 cites W2935751639 @default.
- W3103200212 cites W2962703367 @default.
- W3103200212 cites W3098165218 @default.
- W3103200212 cites W3098741510 @default.
- W3103200212 cites W3099338366 @default.
- W3103200212 cites W3099471130 @default.
- W3103200212 cites W3099747032 @default.
- W3103200212 cites W3122841048 @default.
- W3103200212 cites W4289569283 @default.
- W3103200212 cites W65738273 @default.
- W3103200212 doi "https://doi.org/10.3847/2041-8213/ab3581" @default.
- W3103200212 hasPublicationYear "2019" @default.
- W3103200212 type Work @default.
- W3103200212 sameAs 3103200212 @default.
- W3103200212 citedByCount "13" @default.
- W3103200212 countsByYear W31032002122019 @default.
- W3103200212 countsByYear W31032002122020 @default.
- W3103200212 countsByYear W31032002122021 @default.
- W3103200212 countsByYear W31032002122022 @default.
- W3103200212 countsByYear W31032002122023 @default.
- W3103200212 crossrefType "journal-article" @default.
- W3103200212 hasAuthorship W3103200212A5014484769 @default.
- W3103200212 hasAuthorship W3103200212A5048030159 @default.
- W3103200212 hasAuthorship W3103200212A5081052936 @default.
- W3103200212 hasAuthorship W3103200212A5089805698 @default.
- W3103200212 hasBestOaLocation W31032002121 @default.
- W3103200212 hasConcept C11413529 @default.
- W3103200212 hasConcept C119857082 @default.
- W3103200212 hasConcept C121332964 @default.
- W3103200212 hasConcept C130726490 @default.
- W3103200212 hasConcept C134306372 @default.
- W3103200212 hasConcept C150846664 @default.
- W3103200212 hasConcept C154945302 @default.
- W3103200212 hasConcept C17352008 @default.
- W3103200212 hasConcept C182365436 @default.
- W3103200212 hasConcept C33923547 @default.
- W3103200212 hasConcept C41008148 @default.
- W3103200212 hasConcept C43481613 @default.
- W3103200212 hasConcept C44870925 @default.
- W3103200212 hasConcept C98444146 @default.
- W3103200212 hasConceptScore W3103200212C11413529 @default.
- W3103200212 hasConceptScore W3103200212C119857082 @default.
- W3103200212 hasConceptScore W3103200212C121332964 @default.
- W3103200212 hasConceptScore W3103200212C130726490 @default.
- W3103200212 hasConceptScore W3103200212C134306372 @default.
- W3103200212 hasConceptScore W3103200212C150846664 @default.
- W3103200212 hasConceptScore W3103200212C154945302 @default.
- W3103200212 hasConceptScore W3103200212C17352008 @default.
- W3103200212 hasConceptScore W3103200212C182365436 @default.
- W3103200212 hasConceptScore W3103200212C33923547 @default.
- W3103200212 hasConceptScore W3103200212C41008148 @default.
- W3103200212 hasConceptScore W3103200212C43481613 @default.
- W3103200212 hasConceptScore W3103200212C44870925 @default.
- W3103200212 hasConceptScore W3103200212C98444146 @default.
- W3103200212 hasIssue "1" @default.
- W3103200212 hasLocation W31032002121 @default.
- W3103200212 hasLocation W31032002122 @default.
- W3103200212 hasLocation W31032002123 @default.
- W3103200212 hasOpenAccess W3103200212 @default.
- W3103200212 hasPrimaryLocation W31032002121 @default.